Attrition‐enhanced deracemization of two axially chiral nicotinamides, crystallizing as a conglomerate of a P21 crystal system, was performed. N,N‐Dialkylnicotinamides with substituents on the 2‐ and 4‐positions of the pyridine ring exhibited stable axial chirality due to rotationally restricted scaffolds for the Ar–C(=O)N bond. Crystallization of the racemic mixtures from the melt or attrition‐enhanced deracemization led to the chiral breaking of symmetry to give 95–96 % ee of enantiomorphic crystals.
Asymmetric synthesis was performed by combining the photochemical reaction of an achiral substrate followed by crystallization-induced deracemization. The results indicated that a fused indoline produced by photochemical intramolecular δ-hydrogen abstraction and cyclization of N-(5-chloro-2-methylphenyl)phthalimide crystallized as a racemic conglomerate. Since this substrate has an aminal skeleton, racemization involving a ring-opening and ring-closing equilibrium process occurred under suitable conditions. Efficient racemization was observed in acetone containing a catalytic base, 1,8-diazabicyclo[5.4.0]undec-7ene (DBU). Crystallization-induced dynamic deracemization by Viedma ripening from racemic indoline was performed with an excellent enantioselectivity of 99 % ee. Furthermore, one-pot asymmetric synthesis of the indoline was achieved by the photochemical reaction of achiral phthalimide followed by continuous attrition-enhanced deracemization converging to 99 % ee of enantiomeric crystals. This is the first example of asymmetric expression and amplification by photochemical hydrogen abstraction and crystallizationinduced dynamic deracemization.
Atroposelective resolution for axially chiral nicotinamides was achieved by dynamic chiral salt formation with L-DBTA using six types of nicotinamides that could not be optically resolved by the preferential crystallization method. Kinetic studies of their racemization indicated that the chiral conformation was retained for a significant period of time. Two methods of crystallization-induced asymmetric transformation were examined by dynamic diastereomeric salt formation: solvent evaporation from a supersaturated solution, and attrition-enhanced asymmetric transformation. The attrition method was more effective for asymmetric amplification of diastereomeric salts of axially chiral materials. Attrition of equimolar amount of the nicotinamide salts with L-DBTA converged to one diastereomer salts, and the corresponding enantiomers in 87-99 % ee were obtained after the chiral acid was removed. Changing the ratio of two of the nicotinamides with L-DBTA to 1 : 2 inverted the axial chirality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.