The clinical use of veno-venous extracorporeal membrane oxygenation (VVECMO) in adult patients with respiratory failure is rapidly increasing. However, recirculation of blood oxygenated by ECMO back into the circuit may occur in VVECMO, resulting in insufficient oxygenation. The cannula position and bypass flow rate are two major factors influencing recirculation, but the relationship and ideal configuration of these factors are not fully understood. In the present study, we attempted to clarify these parameters for effective gas exchange. VVECMO was performed in eight adult goats under general anesthesia. The position of the drainage cannula was fixed in the inferior vena cava (IVC), but the return cannula position was varied between the IVC, right atrium (RA), and superior vena cava (SVC). At each position, the recirculation rates calculated, and the adequacy of oxygen delivery by ECMO in supplying systemic oxygen demand was assessed by measuring the arterial oxygen saturation (SaO2) and pressure (PaO2). Although the recirculation rates increased as the bypass flow rates increased, SaO2 and PaO2 also increased in any position of return cannula. The recirculation rates and PaO2 were 27 ± 2% and 162 ± 16 mmHg, 36 ± 6% and 139 ± 11 mmHg, and 63 ± 6% and 77 ± 9 mmHg in the SVC, RA and IVC position at 4 L/min respectively. In conclusion, the best return cannula position was the SVC, and a high bypass flow rate was advantageous for effective oxygenation. Both the bypass flow rates and cannula position must be considered to achieve effective oxygenation.
The association of congenital pelvic kidney with abdominal aortoiliac aneurysm is an extremely rare clinical finding. Previous reports have described various methods of aneurysm repair with successful preservation of the function of pelvic kidney. However, to our knowledge, reconstruction of more than two renal arteries has not been established. We report a case of abdominal aortic aneurysm complicated by congenital right pelvic kidney in a 72-year-old man. Computed tomography (CT) revealed an abdominal aortic aneurysm with a maximum diameter of 54 mm and a right common iliac aneurysm of 45 mm. In addition, he had a congenital right pelvic kidney and CT angiography identified three right pelvic renal arteries. The upper artery originated from the bifurcation of the terminal aorta and the lower two originated from the right common iliac artery. Three-dimensional CT was helpful for the accurate planning of the operation. Open surgical repair of the aortoiliac aneurysm with a Dacron bifurcated graft replacement was decided and reimplantation of all three right pelvic kidney arteries to the right limb of the graft was also performed. For renal preservation, the right pelvic kidney arteries were perfused with cold Ringer's lactate using a rapid infusion pump and coronary perfusion cannula. The patient's postoperative course was uneventful, and worsening of renal function was not observed. The perfusion of renal arteries with cold Ringer's solution was thought to be a simple and appropriate procedure for renal protection.
Continuous-flow left ventricular assist devices (LVADs) have improved the prognosis of end-stage heart failure. However, continuous-flow LVADs diminish pulsatility, which possibly result in bleeding, aortic insufficiency, and other adverse effects. We previously developed a novel control system for a continuous-flow LVAD (EVAHEART; Sun Medical), and demonstrated that we could create sufficient pulsatility by increasing its rotational speed (RS) in the systolic phase (Pulsatile Mode) in the normal heart model. Here, we aimed to evaluate differences between systolic assist with advanced and delayed loads by shifting the timing of increased RS. We implanted EVAHEART in six goats (55.3 ± 4.3 kg) with normal hearts. We reduced their heart rates to <60 bpm using propranolol and controlled the heart rates at 80 and 120 bpm using ventricular pacing. We shifted the timing of increasing RS from -60 to +60 ms in the systolic phase. We found significant increases in all the following parameters when assessments of delayed timing (+60 ms) were compared with assessments of advanced timing (-60 ms): pulse pressure, mean dP/dt max of aortic pressure, and energy-equivalent pulse pressure. During continuous-flow LVAD support, pulsatility can be controlled using a rotary pump. In particular, pulsatility can be shifted by delaying increased RS.
We developed an autologous, trileaflet tissue valve ("biovalve") using in-body tissue architecture technology to overcome the disadvantages of current bioprosthetic valves. We designed a novel biovalve with a balloon-expandable stent: the stent biovalve (SBV). This study evaluated the technical feasibility of sutureless aortic valve replacement using the SBV in an orthotopic position, as well as the functionality of the SBV under systemic circulation, in an acute experimental goat model. Three adult goats (54.5-56.1 kg) underwent sutureless AVR under cardiopulmonary bypass (CPB). The technical feasibility and functionality of the SBVs were assessed using angiography, pressure catheterization, and two-dimensional echocardiography. The sutureless AVR was successful in all goats, and all animals could be weaned off CPB. The mean aortic cross-clamp time was 45 min. Angiogram, after weaning the animals off CPB, showed less than mild paravalvular leakage and central leakage was not detected in any of the goats. The mean peak-to-peak pressure gradient was 6.3 ± 5.0 mmHg. Epicardial two-dimensional echocardiograms showed smooth leaflet movement, including adequate closed positions with good coaptation; the open position demonstrated a large orifice area (average aortic valve area 2.4 ± 0.1 cm2). Sutureless AVR, using SBVs, was feasible in a goat model. The early valvular functionalities of the SBV were sufficient; future long-term experiments are needed to evaluate its durability and histological regeneration potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.