In this study, we demonstrate improved photovoltaic properties in inverted organic thin-film solar cells by simultaneous excitation of grating-coupled surface plasmons and grating-coupled waveguide modes on gold grating surfaces. The cell consists of a glass-ITO substrate/titanium dioxide/poly(3-hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/gold structure. The grating structures were fabricated on P3HT:PCBM layers using a nanoimprinting technique with a PDMS stamp. The grating-structured PDMS stamps were fabricated using a DVD-R grating template with a grating pitch, Λ, of 740 nm. Reflectivity measurements made using p-polarized light clearly indicate 2 types of excitation modes, i.e., surface plasmons and waveguide modes, while s-polarized light produces only waveguide modes. Incident photon-to-current efficiency measurements exhibited increased photocurrent wavelengths corresponding to the wavelengths of surface plasmon excitations and waveguide mode excitations. Through the simultaneous excitation of surface plasmons and waveguide modes, short-circuit photocurrents in the grating-structured cells exhibited an improvement of up to 11% in the solar cells, leading to an efficiency increase of 16%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.