Neural networks have been widely used to model nonlinear systems that are difficult to formulate. Thus far, because neural networks are a radically different approach to mathematical modeling, control theory has not been applied to them, even if they approximate the nonlinear state equation of a control object. In this research, we propose a new approach-i.e., neural model extraction, that enables model-based control for a feed-forward neural network trained for a nonlinear state equation. Specifically, we propose a method for extracting the linear state equations that are equivalent to the neural network corresponding to given input vectors. We conducted simple simulations of a two degrees-of-freedom planar manipulator to verify how the proposed method enables model-based control on neural network forward models. Through simulations, where different settings of the manipulator's state observation are assumed, we successfully confirm the validity of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.