Recently, virtual reality (VR) has become popular for a variety of applications, such as manufacturing and entertainment. In this study, considering that a driver’s head moves according to the motion of turning the steering wheel, we explored the effectiveness of head movement as a means for steering a vehicle in a virtual reality driving simulation. First, we analyzed the motion axes that are effective for control and found that the x (horizontal) direction, yaw rotation, and roll rotation are potential candidates. Through the implementation of a simulator, which allows participants to steer the vehicle by means of head movement, it was found that the x-axis movement was the most reliable as it reduced VR sickness while guaranteeing better usability and realistic motion. Human–machine interaction can become conceived of as symmetrical in the sense that if a machine is truly easy for humans to handle, it means that they can get the best out of it.
The progress of immersive technology enables researchers and developers to construct work spaces that are freed from realworld constraints. This has motivated us to investigate the role of the human body. In this research, we examine human cognitive behaviors in obtaining an understanding of the width of their virtual body through simple yet meaningful experiments using virtual reality (VR). In the experiments, participants were modeled as an invisible board, and a spherical object was thrown at the participants to provide information for exploring the width of their invisible body. Audio and visual feedback were provided when the object came into contact with the board (body). We first explored how precisely the participants perceived the virtual body width. Next, we examined how the body perception was generated and changed as the trial proceeded when the participants tried to move right or left actively for the avoidance of collision with approaching objects. The results of the experiments indicated that the participants could become successful in avoiding collision within a limited number of trials (14 at most) under the experimental conditions. It was also found that they postponed deciding how much they should move at the beginning and then started taking evasive action earlier as they become aware of the virtual body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.