High-quality Ge epilayers on Si with low threading-dislocation densities were achieved by a two-step ultrahigh vacuum/chemical-vapor-deposition process followed by cyclic thermal annealing. On large Si wafers, Ge on Si with threading-dislocation density of 2.3×107 cm−2 was obtained. Combining selective area growth with cyclic thermal annealing produced an average threading-dislocation density of 2.3×106 cm−2.We also demonstrated small mesas of Ge on Si with no threading dislocations. The process described in this letter for making high-quality Ge on Si is uncomplicated and can be easily integrated with standard Si processes.
Spatially resolved cathodoluminescence (CL) spectrum mapping revealed a strong exciton localization in InGaN single-quantum-wells (SQWs). Transmission electron micrographs exhibited a well-organized SQW structure having abrupt InGaN/GaN heterointerfaces. However, comparison between atomic force microscopy images for GaN-capped and uncapped SQWs indicated areas of InN-rich material, which are about 20 nm in lateral size. The CL images taken at the higher and lower energy side of the spatially integrated CL peak consisted of emissions from complementary real spaces, and the area was smaller than 60 nm in lateral size.
Band gap shrinkage induced by tensile strain is shown for Ge directly grown on Si substrate. In Ge-on-Si pin diodes, photons having energy lower than the direct band gap of bulk Ge were efficiently detected. According to photoreflectance measurement, this property is due to band gap shrinkage. The origin of the shrinkage is not the Franz–Keldysh effect but rather tensile strain. It is discussed that the generation of such a tensile strain can be ascribed to the difference of thermal expansion between Ge and Si. Advantages of this tensile Ge for application to photodiode are also discussed.
Abstract:The emergence of silicon photonics over the past two decades has established silicon as a preferred substrate platform for photonic integration. While most silicon-based photonic components have so far been realized in the near-infrared (near-IR) telecommunication bands, the mid-infrared (mid-IR, 2-20-μm wavelength) band presents a significant growth opportunity for integrated photonics. In this review, we offer our perspective on the burgeoning field of mid-IR integrated photonics on silicon. A comprehensive survey on the state-of-the-art of key photonic devices such as waveguides, light sources, modulators, and detectors is presented. Furthermore, on-chip spectroscopic chemical sensing is quantitatively analyzed as an example of mid-IR photonic system integration based on these basic building blocks, and the constituent component choices are discussed and contrasted in the context of system performance and integration technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.