Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process.
Backgrounds: Infection by virus or treatment with double-stranded RNA (dsRNA) results in the activation of transcription factors including IRF-3, IRF-7 and a pleiotropic regulator NF-kB by specific phosphorylation. These factors are important in triggering a cascade of antiviral responses. A protein kinase that is yet to be identified is responsible for the activation of these factors and plays a key role in the responses.
Infections of bacteria and viruses induce host defense reactions known as innate responses that include the production of cytokines and chemokines. The production of type I interferon (IFN) is known to be induced by viral double-stranded (ds) RNA or bacterial lipopolysaccharide (LPS). Although important functions for the transcription factors NF-U UB and interferon regulatory factor-3 (IRF-3) are indicated, the molecular signals leading to the activation of IFN genes have yet to be elucidated. We provide several lines of evidence that LPS and dsRNA trigger distinct intracellular signals upstream. Notably, our investigation revealed a critical function for TIRAP/MAL, a signaling adapter for Toll-like receptor (TLR) 4, in LPS-induced but not dsRNA-induced activation of IRF-3. These results highlight cross-talk between TLR-mediated and virus/dsRNA-induced signals resulting in activation of the IFN system. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.