Background: Nrf2 is up-regulated in response to reoxygenation after hypoxia. Results: Hypoxia suppressed Nrf2 expression and induced Siah2 expression. Knockdown of Siah2 rescued hypoxic suppression of an Nrf2 mutant that mimicked phosphorylation at serine 40 or lacked this phosphorylation site. Conclusion: Siah2 serves as a novel regulator of Nrf2. Significance: Association of Siah2 with Nrf2 causes the degradation of Nrf2 irrespective of its phosphorylation status at serine 40.
Bisphenol A (BPA) is being recognized as an endocrine-disrupting chemical (EDC). Recently, several reports indicated that BPA affects the central nervous system (CNS) during embryonic development. However, the molecular mechanism of BPA in the CNS is not well known. Here, we show that BPA affected Notch signaling by inhibiting the activity of the Notch intracellular domain (NICD) cleavage-related enzyme, gamma-secretase (gamma-secretase), at the neurula stage of the Xenopus laevis. BPA caused various morphologic aberrations including scoliosis, eye dysplasia, and loss of pigments in the X. laevis tadpole. These abnormalities were seen whenever BPA was used at the neurula stage. In addition, the expression levels of several marker mRNAs at the neurula stage were investigated by RT-PCR, and we found that the mRNAs expression of ectodermal marker, Pax6, CNS marker, Sox2, and neural crest marker, FoxD3, were decreased by treatment with BPA. These genes contribute to the neural differentiation at the neurula stage, and also the downstream factors of Notch signaling. Injection of NICD but not a Notch ligand, delta 1, rescued the abnormalities caused by BPA. We subsequently assayed the inhibition of the activities of NICD cleavage-related enzymes, tumor necrosis factor alpha converting enzyme, and gamma-secretase, by BPA and found that BPA inhibited the gamma-secretase activity. Furthermore, we expressed presenilin, a main component of gamma-secretase, in Escherichia coli and found the direct binding of BPA with presenilin. These results suggest that BPA affected the neural differentiation by inhibiting gamma-secretase activity, leading to neurodevelopmental abnormalities.
MicroRNA (miR)-203 is downregulated and acts as an anti-oncomir in melanoma cells. Here, using human and canine melanoma cells, we elucidated the effects of miR-203 on cyclic adenosine monophosphate response element binding protein (CREB)/microphthalmia-associated transcription factor (MITF)/RAB27a pathway, which is known to be important for the development and progression of human melanoma. In this study, we showed that miR-203 directly targeted CREB1 and regulated its downstream targets, MITF and RAB27a. miR-203 significantly suppressed the growth of human and canine melanoma cells and inhibited melanosome transport through the suppression of the signalling pathway. In conclusion, miR-203 was shown to be a common tumour-suppressive miRNA in human and canine melanoma and thus to play a crucial role in the biological mechanisms of melanoma development.
The RING finger ubiquitin ligase seven in absentia homolog 2 (Siah2) was identified in the R7 photoreceptor cells of Drosophila melanogaster, and it regulates the stability of prolyl hydroxylase domains (PHDs), with a concomitant effect on HIF-1α availability in the hypoxia response pathway. We previously reported that the hypoxia response pathway contributes to eye development during the embryonic development of Xenopus laevis. In this paper, the role of Siah2-mediated hypoxia response pathway in eye development of X. laevis embryos was further characterized. Xenopus Siah2 (xSiah2) mRNA was detected in lens tissue and xSiah2 overexpression caused a thickened lens placode, leading to loss of the optic lens. In embryos overexpressing xSiah2, lens marker gene transcription was reduced, suggesting that xSiah2 contributes to lens formation. xSiah2 overexpression decreased Xenopus PHD accumulation and increased Xenopus HIF-1α (xHIF-1α) accumulation. xHIF-1α degeneration with resveratrol restored the optical abnormality caused by xSiah2 overexpression, suggesting that the xSiah2-mediated hypoxia response pathway contributes to lens formation. Moreover, xSiah2 overexpression decreased endothelial–mesenchymal transition (EMT)-related Notch signaling-responsive genes transcription during the invasion of the lens placode. Our results suggest that the hypoxia response pathway plays an important role in the regulation of the EMT via the Notch signaling pathway during lens formation.
The seven in absentia homolog (Siah) family proteins are components of E3 ubiquitin ligase complexes that catalyze the ubiquitination of proteins. Siah proteins target their substrates for proteasomal degradation. Several studies have reported that Siah proteins are involved in tumorigenesis and angiogenesis, particularly through the Ras and HIF-1a signaling pathways in hypoxic response. Recent studies also have reported that Siah2 stabilization impairs the NF-E2-related factor 2 (Nrf2) signaling pathway, which is a master regulator of reactive oxygen species (ROS) metabolism. Hypoxia induces the phosphorylation of Nrf2 and then decreases the Keap1-mediated degradation of Nrf2 compared with that under normoxia. In addition, hypoxia-induced Siah2 provides a dominating Nrf2 degradation pathway over that of Keap1 under hypoxia. Given their critical roles in ROS metabolism, Siah proteins are attractive targets for effective therapy under particular conditions such as hypoxia and hypoglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.