We studied the LET and ion species dependence of the RBE for cell killing to clarify the differences in the biological effects caused by the differences in the track structure that result from the different energy depositions for different ions. Normal human skin fibroblasts were irradiated with heavy-ion beams such as carbon, neon, silicon and iron ions that were generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Science (NIRS) in Japan. Cell killing was measured as reproductive cell death using a colony formation assay. The RBE-LET curves were different for carbon ions and for the other ions. The curve for carbon ions increased steeply up to around 98 keV/microm. The RBE of carbon ions at 98 keV/microm was 4.07. In contrast, the curves for neon, silicon and iron ions had maximum peaks around 180 keV/microm, and the RBEs at the peak position ranged from 3.03 to 3.39. When the RBEs were plotted as a function of Z*2/beta2 (where Z* is the effective charge and beta is the relative velocity of the ion) instead of LET, the discrepancies between the RBE-LET curves for the different ion beams were reduced, but branching of the RBE-Z*2/beta2 curves still remained. When the inactivation cross section was plotted as a function of either LET or Z*2/beta2, it increased with increasing LET. However, the inactivation cross section was always smaller than the geometrical cross section. These results suggest that the differences in the energy deposition track structures of the different ion sources have an effect on cell killing.
The Mobile Radiation Exposure Control System's (Liulin-4 type) main purpose is to monitor simultaneously the doses and fluxes at 4 independent places. It can also be used for personnel dosimetry. The system consists of 4 battery-operated 256-channel dosimeters-spectrometers. We describe results obtained during the calibrations of the spectrometers at the Cyclotron facilities of the University of Louvain, Belgium and of the National Institute of Radiological Sciences-STA, Chiba, Japan with protons of energies up to 70 MeV. The angular sensitivities of the devices are studied and compared with MonteCarlo predictions. We also present the results obtained at the HIMAC accelerator with 500 MeV/u Fe ions and at the CERN high energy radiation reference fields. Records made during airplane flights are shown and compared with the predictions of the CARI-6 model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.