Graphene, a two-dimensional layer of sp(2)-hybridized carbon atoms, can be viewed as a sheet of benzene rings fused together. Three benzene rings can be combined in three different ways, to yield linear anthracene and angular phenanthrene, where the rings share two C-C bonds, and the phenalenyl structure where three C-C bonds are shared between the rings. This third structure contains an uneven number of carbon atoms and, hence, in its neutral state, an uneven number of electrons--that is, it is a radical. All three structures may be viewed as being sections of graphene. Extension of this concept leads to an entire family of phenalenyl derivatives--'open-shell graphene fragments'--that are of substantial interest from the standpoint of fundamental science as well as in view of their potential applications in materials chemistry, in particular quantum electronic devices. Here we discuss current trends and challenges in this field.
Secondary batteries using organic electrode-active materials promise to surpass present Li-ion batteries in terms of safety and resource price. The use of organic polymers for cathode-active materials has already achieved a high voltage and cycle performance comparable to those of Li-ion batteries. It is therefore timely to develop approaches for high-capacity organic materials-based battery applications. Here we demonstrate organic tailored batteries with high capacity by using organic molecules with degenerate molecular orbitals (MOs) as electrode-active materials. Trioxotriangulene (TOT), an organic open-shell molecule, with a singly occupied MO (SOMO) and two degenerate lowest-unoccupied MOs (LUMOs) was investigated. A tri-tert-butylated derivative ((t-Bu)(3)TOT)exhibited a high discharge capacity of more than 300 A h kg(-1), exceeding those delivered by Li-ion batteries. A tribrominated derivative (Br(3)TOT) was also shown to increase the output voltage and cycle performance up to 85% after 100 cycles of the charge-discharge processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.