Diarylethenes (DAEs) have rarely been used in the design of photoresponsive supramolecular assemblies with a well-defined morphology transition owing to rather small structural changes upon photoisomerization. A supramolecular design based on the parallel conformation of DAEs enables the construction of photoresponsive dye assemblies that undergo remarkable nanomorphology transitions. The cooperative stacking of perylene bisimide (PBI) dyes was used to stabilize the parallel conformer of DAE through complementary hydrogen bonds. Atomic force microscopy, UV/Vis spectroscopy, and molecular modeling revealed that our DAE and PBI building blocks coassembled in nonpolar solvent to form well-defined helical nanofibers featuring J-type dimers of PBI dyes. Upon irradiating the coassembly solution with UV and visible light in turn, a reversible morphology change between nanofibers and nanoparticles was observed. This system involves the generation of a new self-assembly pathway by means of photocontrol.
Diarylethene 1 equipped with two monotopic melamine hydrogen-bonding sites and oligothiophene-functionalized ditopic cyanurate (OTCA) were mixed in a nonpolar solvent to form AA-BB-type supramolecular co-polymers (SCPs) bearing photoswitchable moieties in their main chains and extended π systems as side chains. UV/Vis, fluorescence, dynamic light scattering (DLS), TEM, and AFM studies revealed that the two functional co-monomers formed flexible quasi-one-dimensional SCPs in solution that hierarchically self-organized into helical nanofibers through H-aggregation of the oligothiophene side chains. Upon irradiating the SCPs with UV light, a transition occurred from the H-aggregated state to non-aggregated monomeric oligothiophene side chains, as shown by spectroscopic studies, which indicates the formation of small oligomeric species held together only by hydrogen-bonding interactions. TEM and AFM visualized unfolded fibrils corresponding to elongated single SCP chains formed upon removal of solvent. The helical nanofibers were regenerated upon irradiating the UV-irradiated solution with visible light. These results demonstrated that the supramolecular polymerisation followed by hierarchical organization can be effectively controlled by proper supramolecular designs using diarylethenes and π-conjugated oligomers.
Licht an: Die Photokontrolle von J‐artigen Excitonen‐Wechselwirkungen gelingt mithilfe von Chromophoren (siehe Bild). Wasserstoffverbrückte Merocyanin‐Farbstoffe lassen sich durch photoinduzierten Ringschluss/Ringöffnung von Diarylethen‐Rezeptoren reversibel schalten. Die Zugabe von Bismelamin‐Rezeptoren, die eine H‐Aggregation induzieren, ermöglicht die partielle wechselseitige Umwandlung zwischen J‐ und H‐artiger Excitonenkopplung.
Diarylethenes (DAEs) have rarely been used in the design of photoresponsive supramolecular assemblies with a well‐defined morphology transition owing to rather small structural changes upon photoisomerization. A supramolecular design based on the parallel conformation of DAEs enables the construction of photoresponsive dye assemblies that undergo remarkable nanomorphology transitions. The cooperative stacking of perylene bisimide (PBI) dyes was used to stabilize the parallel conformer of DAE through complementary hydrogen bonds. Atomic force microscopy, UV/Vis spectroscopy, and molecular modeling revealed that our DAE and PBI building blocks coassembled in nonpolar solvent to form well‐defined helical nanofibers featuring J‐type dimers of PBI dyes. Upon irradiating the coassembly solution with UV and visible light in turn, a reversible morphology change between nanofibers and nanoparticles was observed. This system involves the generation of a new self‐assembly pathway by means of photocontrol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.