We have been analyzing genes for reproductive isolation by replacing Drosophila melanogaster genes with homologs from Drosophila simulans by interspecific backcrossing. Among the introgressions established, we found that a segment of the left arm of chromosome 2, Int(2L)S, carried recessive genes for hybrid sterility and inviability. That nuclear pore protein 160 (Nup160) in the introgression region is involved in hybrid inviability, as suggested by others, was confirmed by the present analysis. Male hybrids carrying an X chromosome of D. melanogaster were not rescued by the Lethal hybrid rescue (Lhr) mutation when the D. simulans Nup160 allele was made homozygous or hemizygous. Furthermore, we uniquely found that Nup160 is also responsible for hybrid sterility. Females were sterile when D. simulans Nup160 was made homozygous or hemizygous in the D. melanogaster genetic background. Genetic analyses indicated that the D. simulans Nup160 introgression into D. melanogaster was sufficient to cause female sterility but that other autosomal genes of D. simulans were also necessary to cause lethality. The involvement of Nup160 in hybrid inviability and female sterility was confirmed by transgene experiment.
In the cross between Drosophila melanogaster females and D. simulans males, hybrid males die at the late larval stage, and the sibling females also die at later stages at high temperatures. Removing the D. simulans allele of the Lethal hybrid rescue gene (Lhr (sim) ) improves the hybrid incompatibility phenotypes. However, the loss-of-function mutation of Lhr (sim) (Lhr (sim0) ) does not rescue the hybrid males in crosses with several D. melanogaster strains. We first describe the genetic factor possessed by the D. melanogaster strains. It has been suggested that removing the D. melanogaster allele of Lhr (Lhr (mel) ), that is Lhr (mel0) , does not have the hybrid male rescue effect, contrasting to Lhr (sim0) . Because the expression level of the Lhr gene is known to be Lhr (sim) > Lhr (mel) in the hybrid, Lhr (mel0) may not lead to enough of a reduction in total Lhr expression. Then, there is a possibility that the D. melanogaster factor changes the expression level to Lhr (sim) < Lhr (mel) . But in fact, the expression level was Lhr (sim) > Lhr (mel) in the hybrid irrespectively of the presence of the factor. At last, we showed that Lhr (mel0) slightly improves the viability of hybrid females, which was not realized previously. All of the present results are consistent with the allelic asymmetry model of the Lhr gene expression in the hybrid.
, but revertants of the gene did not. Interestingly, several mutations produced by excision partially complemented hybrid inviability, female sterility, or morphological anomalies. In the future, these mutations will be useful to further our understanding of the developmental mechanisms of reproductive isolation. Based on our analyses with the Nup160 sim introgression line, the lethal phase of hybrid inviability was determined to be during the early pupal stage. Our analysis also suggested that homozygous Nup160 sim in D. melanogaster leads to slow development. Thus, Nup160 sim is involved in multiple aspects of reproductive isolation between these two species.
In interspecific hybrids between Drosophila melanogaster and Drosophila simulans, the D. simulans nucleoporin-encoding Nup96sim and Nup160sim can cause recessive lethality if the hybrid does not also inherit the D. simulans X chromosome. In addition, Nup160sim leads to recessive female sterility in the D. melanogaster genetic background. Here, we conducted carefully controlled crosses to better understandthe relationship between Nup96sim and Nup160sim. Nup96sim did not lead to female sterility in the D. melanogaster genetic background, and double introgression of Nup96sim and Nup160sim did not generally lead to lethality when one was heterozygous and the other homozygous (hemizygous). It appears that introgression of additional autosomal D. simulans genes is necessary to cause lethality and that the effect of the introgression is dominant to D. melanogaster alleles. Interestingly, the genetic background affected dominance of Nup96sim, and double introgression carrying homozygous Nup96sim and hemizygous Nup160sim resulted in lethality. Thus, Nup96sim and Nup160sim seem to be two components of the same incompatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.