This is the first study to demonstrate DCA can effectively sensitize wild-type and over expressing Bcl-2 human prostate cancer cells to radiation by modulating the expression of key members of the Bcl-2 family. Together, these findings warrant further evaluation of the combination of DCA and irradiation.
Recent epidemiologic, genetic, and molecular studies suggest infection and inflammation initiate certain cancers, including those of the prostate. The American Cancer Society, estimates that approximately 20% of all worldwide cancers are caused by infection. Mycoplasma, a genus of bacteria that lack a cell wall, are among the few prokaryotes that can grow in close relationship with mammalian cells, often without any apparent pathology, for extended periods of time. In this study, the capacity of Mycoplasma genitalium, a prevalent sexually transmitted infection, and Mycoplasma hyorhinis, a mycoplasma found at unusually high frequency among patients with AIDS, to induce a malignant phenotype in benign human prostate cells (BPH-1) was evaluated using a series of in vitro and in vivo assays. After 19 weeks of culture, infected BPH-1 cells achieved anchorage-independent growth and increased migration and invasion. Malignant transformation of infected BPH-1 cells was confirmed by the formation of xenograft tumors in athymic mice. Associated with these changes was an increase in karyotypic entropy, evident by the accumulation of chromosomal aberrations and polysomy. This is the first report describing the capacity of M. genitalium or M. hyorhinis infection to lead to the malignant transformation of benign human epithelial cells and may serve as a model to further study the relationship between prostatitis and prostatic carcinogenesis.
The Mycoplasma hyorhinis protein p37 has been implicated in tumorigenic transformation for more than 20 years. Though there are many speculations as to its function, based solely on sequence homology, the issue has remained unresolved. Presented here is the 1.6-Å-resolution refined crystal structure of M. hyorhinis p37, renamed the extracytoplasmic thiamine-binding lipoprotein (Cypl). The structure shows thiamine pyrophosphate (TPP) and two calcium ions are bound to Cypl and give the first insights into possible functions of the Cypl-like family of proteins. Sequence alignments of Cypl-like proteins between several different species of mycoplasma show that the thiamine-binding site is likely conserved and structural alignments reveal the similarity of Cypl to various binding proteins. While the experimentally determined function of Cypl remains unknown, the structure shows that the protein is a TPP-binding protein, opening up many avenues for future mechanistic studies and making Cypl a possible target for combating mycoplasma infections and tumorigenic transformation.
Together, these results demonstrate that Bcl-2 can regulate tumoral angiogenesis and lymphangiogenesis and suggest that therapy targeted at Bcl-2 expression, angiogenesis, and lymphangiogenesis may synergistically modulate tumor growth and confirm that Bcl-2 is a pivotal target for cancer therapy.
Purpose
We have previously demonstrated that prostate tumors that highly express Bcl-2 are not only more tumorigenic, but also more angiogenic than low Bcl-2 expressing tumors. Observed increased rates of angiogenesis are likely due to the secretion of multiple factors from the tumor cells.
Experimental design
Human endothelial cells were subjected to exogenous VEGF or conditioned media from PC-3 cells and assayed by several in vitro systems to better characterize the eVects of tumor microenvironment on endothelial cells.
Results
VEGF stimulation increased Bcl-2 expression in human microvascular endothelial cells (HMVECs), at least partially through stabilization of Bcl-2 mRNA transcripts, and protected these cells from apoptosis. These effects were mimicked by treatment of HMVECs with conditioned media from cultured PC-3 prostate tumor cells manipulated to overexpress Bcl-2. Through the use of kinase inhibitors and molecular profiling, several distinct pathways were implicated in the regulation of Bcl-2 in HMVECs, including those involving PI3K/AKT, PKC, mTOR, STAT-1, and IL-8, factors associated with tumor survival and growth.
Conclusions
This study identifies molecular elements of a link between Bcl-2 expression in distinct cell types within a tumor and reaffirms that strategies designed to target Bcl-2 are desirable as they might enhance treatment response through dual effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.