DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO) is a future Japanese space gravitational-wave antenna. The most important objective of DECIGO, among various sciences to be aimed at, is to detect gravitational waves coming from the inflation of the universe. DECIGO consists of four clusters of spacecraft, and each cluster consists of three spacecraft with three Fabry–Perot Michelson interferometers. As a pathfinder mission of DECIGO, B-DECIGO will be launched, hopefully in the 2020s, to demonstrate technologies necessary for DECIGO as well as to lead to fruitful multimessenger astronomy. B-DECIGO is a small-scale or simpler version of DECIGO with the sensitivity slightly worse than that of DECIGO, yet good enough to provide frequent detection of gravitational waves.
The radio astronomy satellite HALCA was launched by the Institute of Space and Astronautical Science in 1997 February to participate in Very Long Baseline Interferometry (VLBI) observations with arrays of ground radio telescopes. HALCA is the main element of the VLBI Space Observatory Programme (VSOP), a complex international endeavor involving over 25 ground radio telescopes, five tracking stations and three correlators. Simultaneous observations with HALCA's 8 meter diameter radio telescope and ground radio telescopes synthesize a radio telescope over twice the size of the Earth, enabling the highest resolution 1.6 GHz and 5 GHz images to be made.
In nonlinear electromagnetism in vacuum, a classical electromagnetic wave itself can generate another wave. A classical field can become a source for a nonlinear correction via the polarization and magnetization of vacuum. We elucidate that a resonant generation is intrinsic to the theoretical structure of nonlinear electromagnetism. The resonance can take place when the phases, or the cycles of the source and the nonlinear correction match. We demonstrate two specific systems as examples. For a plane wave and constant fields, nonlinear corrective electromagnetic fields are resonantly enhanced with distance. It is shown in a stationary special solution. For more realistic system, we have considered the case of a standing wave in a cavity with an appropriate initial and boundary conditions. As a result, the corrections are resonantly enhanced with time. The resonance effect in the cavity is shown to be observed more effectively by combining a static magnetic flux density. We have evaluated the resonant effect using concrete parameters of current experiments. The demonstrated resonance can be combined with existing proposals to enable experimental detection of nonlinear optical effects of vacuum easier.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.