Human immunodeficiency virus 2 Vpx coordinates zinc through residues H39, H82, C87 and C89. We reported previously that H39, H82 and C87 mutants maintain Vpx activity to facilitate the degradation of SAMHD1. Herein, the expression of Vpx mutants in cells was examined in detail. We demonstrated that the zinc-binding site stabilizes the protein to keep its function in virus growth when low levels of Vpx are expressed. At higher levels of expression, Vpx aggregation could occur, and zinc binding would suppress such aggregation. Among the amino acids involved in zinc coordination, H39 plays the most critical role. In summary, zinc binding appears to mitigate flexibility of the three-helix fold of Vpx, thereby preventing dysfunction.
The Vpx and Vpr proteins of human immunodeficiency virus type 2 (HIV-2) are important for virus replication. Although these proteins are homologous, Vpx is expressed at much higher levels than Vpr. Previous studies demonstrated that this difference results from the presence of an HHCC zinc-binding site in Vpx that is absent in Vpr. Vpx has another unique region, a poly-proline motif (PPM) of seven consecutive prolines at the C-terminus. Using PPM point mutants of Vpx, this study demonstrated that these seven consecutive prolines are critical for suppressing proteasome degradation of Vpx in the absence of Gag. Both the PPM and the zinc-binding site stabilize Vpx but do so via different mechanisms. PPM and zinc-binding site mutants overexpressed in Escherichia coli aggregated readily, indicating that these motifs normally prevent exposure of the hydrophobic region outside the structure. Furthermore, introduction of the zinc-binding site and the PPM into Vpr increased the level of Vpr expression so that it was as high as that of Vpx. Intriguingly, HIV-2 has evolved to express Vpx at high levels and Vpr at low levels based on the presence and absence of these two motifs with distinct roles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.