Drosophila rely entirely on an innate immune response to combat microbial infection. Diaminopimelic acid-containing peptidoglycan, produced by Gram-negative bacteria, is recognized by two receptors, PGRP-LC and PGRP-LE, and activates a homolog of transcription factor NF-kappaB through the Imd signaling pathway. Here we show that full-length PGRP-LE acted as an intracellular receptor for monomeric peptidoglycan, whereas a version of PGRP-LE containing only the PGRP domain functioned extracellularly, like the mammalian CD14 molecule, to enhance PGRP-LC-mediated peptidoglycan recognition on the cell surface. Interaction with the imd signaling protein was not required for PGRP-LC signaling. Instead, PGRP-LC and PGRP-LE signaled through a receptor-interacting protein homotypic interaction motif-like motif. These data demonstrate that like mammals, drosophila use both extracellular and intracellular receptors, which have conserved signaling mechanisms, for innate immune recognition.
The progressive myoclonus epilepsy of Lafora type is an autosomal recessive disorder caused by mutations in the EPM2A gene. EPM2A is predicted to encode a putative tyrosine phosphatase protein, named laforin, whose full sequence has not yet been reported. In order to understand the function of the EPM2A gene, we isolated a full-length cDNA, raised an antibody and characterized its protein product. The full-length clone predicts a 38 kDa laforin that was very close to the size detected in transfected cells. Recombinant laforin was able to hydrolyze phosphotyrosine as well as phosphoserine/threonine substrates, demonstrating that laforin is an active dual-specificity phosphatase. Biochemical, immunofluorescence and electron microscopic studies on the full-length laforin expressed in HeLa cells revealed that laforin is a cytoplasmic protein associated with polyribosomes, possibly through a conformation-dependent protein-protein interaction. We analyzed the intracellular targeting of two laforin mutants with missense mutations. Expression of both mutants resulted in ubiquitin-positive perinuclear aggregates suggesting that they were misfolded proteins targeted for degradation. Our results suggest that laforin is involved in translational regulation and that protein misfolding may be one of the molecular bases of the Lafora disease phenotype caused by missense mutations in the EPM2A gene.
Two new protein phosphatase inhibitors, oscillamide B (1) and C (2), were isolated from the cyanobacteria Planktothrix (Oscillatoria) agardhii and P. rubescens. The structures of the inhibitors were elucidated by analysis of HRFABMS, 1D and 2D NMR spectra, and chemical degradation. These inhibitors are ureido-containing cyclic peptides and inhibited serine/threonine protein phosphatases PP1 and PP2A. The inhibitory activities were closely related to the Arg and N-Me-Hty residues in the peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.