Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.psychology | behavior | comparative methods | inhibitory control | executive function S ince Darwin, understanding the evolution of cognition has been widely regarded as one of the greatest challenges for evolutionary research (1). Although researchers have identified surprising cognitive flexibility in a range of species (2-40) and potentially derived features of human psychology (41-61), we know much less about the major forces shaping cognitive evolution (62-71). With the notable exception of Bitterman's landmark studies conducted several decades ago (63, 72-74), most research comparing cognition across species has been limited to small taxonomic samples (70, 75). With limited comparable experimental data on how cognition varies across species, previous research has largely relied on proxies for cognition (e.g., brain size) or metaanalyses when testing hypotheses about cognitive evolution (76-92). The lack of cognitive data collected with similar methods across large samples of species precludes meaningful species comparisons that can reveal the major forces shaping cognitive evolution across species, including humans (48,70,89,(93)(94)(95)(96)(97)(98). SignificanceAlthough scientists have identified surprising cognitive flexibility in animals and potentially unique features of human psychology, we know less about the selective forces that favor cognitive evolution, or the proximate biological mechanisms underlying this process. We tested 36 species in two problemsolving tasks measuring self-control and evaluated the leading hypotheses regarding how ...
Hereditary progressive dystonia with marked diurnal fluctuation (HPD) (also known as dopa responsive dystonia) is a dystonia with onset in childhood that shows a marked response without any side effects to levodopa. Recently the gene for dopa responsive dystonia (DRD) was mapped to chromosome 14q. Here we report that GTP cyclohydrolase I is mapped to 14q22.1-q22.2. The identification of four independent mutations of the gene for GTP cyclohydrolase I in patients with HPD, as well as a marked decrease in the enzyme's activity in mononuclear blood cells, confirms that the GTP cyclohydrolase I gene is a causative gene for HPD/DRD. This is the first report of a causative gene for the inherited dystonias.
Tyrosine 3-hydroxylase (TH, EC 1.14.16.2) catalyzes the first and rate-limiting step of the catecholamine biosynthetic pathway in the nervous and endocrine systems. The TH locus was disrupted in mouse embryonic stem cells by homologous recombination. Mice heterozygous for the TH mutation were apparently normal. In these mice, TH activity in the embryos and adult tissues was less than 50% of the wild-type values, but the catecholamine level was decreased only moderately in the developing animals and was maintained normally at adulthood, suggesting the presence of a regulatory mechanism for ensuring the proper catecholamine level during animal development. In contrast, the homozygous mutant mice died at a late stage of embryonic development or shortly after birth. Both TH mRNA and enzyme activity were lacking in the homozygous mutants, which thus explained the severe depletion of catecholamines. These changes, however, did not affect gross morphological development of the cells that normally express high catecholamine levels. Analysis of electrocardiograms of surviving newborn mutants showed bradycardia, suggesting an alteration of cardiac functions in the homozygous mice that may lead to the lethality of this mutation. In addition, transfer of a human TH transgene into the homozygous mice corrected the mutant phenotype, showing recovery of TH activity by expression of the human enzyme. These results indicate that TH is essential for survival of the animals during the late gestational development and after birth.Catecholaminergic neurons, which include dopaminergic, noradrenergic, and adrenergic neurons, are located in discrete regions in the central nervous system and have an important role in a wide range of brain functions, such as locomotion, behavior, sleep, memory, and learning. In the peripheral tissues, sympathetic neurons are noradrenergic, and adrenomedullary chromaffin cells produce noradrenaline and adrenaline as hormones. During vertebrate development, catecholaminergic phenotypes are generated from a given neuronal lineage. The primordial catecholaminergic neurons appear in the intermediate zone of the neural tube at the early embryonic stage (reviewed in Ref.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.