In order to achieve the intended level of communication with visitors in museums where large displays are installed, it is essential to understand how various display factors affect visitors. We explore the effects of the display angle on individual users. In our experiment, we set up three types of flat displays-vertical, horizontal, and tilted-and comprehensively tested users' cognitive, behavioral, and subjective aspects. The results showed that a significant difference could be discerned in regards to cognitive and subjective aspects. Test results for the cognitive aspect showed that the display angle on which the displayed content was easy to understand and remember differed depending on age. Test results for the subjective aspect showed that irrespective of age, users rated tilted displays as being quicker to attract attention and easier to peruse, to understand and remember the content, and to interact with, and such displays were the most preferred.
The intuitiveness of tangible user interface (TUI) is not only for its operator. It is quite possible that this type of user interface (UI) can also have an effect on the experience and learning of observers who are just watching the operator using it. To understand the possible effect of TUI, the present study focused on the mu rhythm suppression in the sensorimotor area reflecting execution and observation of action, and investigated the brain activity both in its operator and observer. In the observer experiment, the effect of TUI on its observers was demonstrated through the brain activity. Although the effect of the grasping action itself was uncertain, the unpredictability of the result of the action seemed to have some effect on the mirror neuron system (MNS)-related brain activity. In the operator experiment, in spite of the same grasping action, the brain activity was activated in the sensorimotor area when UI functions were included (TUI). Such activation of the brain activity was not found with a graphical user interface (GUI) that has UI functions without grasping action. These results suggest that the MNS-related brain activity is involved in the effect of TUI, indicating the possibility of UI evaluation based on brain activity.
In the present study, we investigated the effect of the image of hands on mu rhythm suppression invoked by the observation of a series of tool-based actions in a goal-directed activity. The participants were 11 university students. As a source of visual stimuli to be used in the test, a video animation of the porcelain making process for museums was used. In order to elucidate the effect of hand imagery, the image of hands was omitted from the original (“hand image included”) version of the animation to prepare another (“hand image omitted”) version. The present study has demonstrated that, an individual watching an instructive animation on the porcelain making process, the image of the porcelain maker’s hands can activate the mirror neuron system (MNS). In observations of “tool included” clips, even the “hand image omitted” clip induced significant mu rhythm suppression in the right central area. These results suggest that the visual observation of a tool-based action may be able to activate the MNS even in the absence of hand imagery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.