Our previous study showed α-lipoic acid (LA) downregulated cell surface β1-integrin expression of v-H-ras-transformed derivative of rat fibroblast with amelioration of their malignant phenotype. Here, we evaluated the ameliorating effect of LA on the malignant characters in H-ras-transformed bladder cancer cells. H-ras mutated bladder cancer line, T24 cells were incubated with LA to evaluate the inhibitory effect on proliferation, migration, invasion and β1-integrin expression. Fluorescence staining of F-actin and western blotting analyses of the related signaling pathways were also performed. LA inhibited the proliferation of T24 cells. Cell adhesion to collagen IV and fibronectin was strikingly inhibited by LA treatment accompanied by downregulation of cell surface but not whole cell β1-integrin expression. LA clearly inhibited cell migration and invasion of T24 cells, which were mimicked by extracellular signal-regulated kinase (ERK) and Akt pathway inhibition. Actually, LA significantly downregulated the phosphorylated ERK and Akt levels. Moreover, LA downregulated phosphorylated focal adhesion kinase level with disappearance of stress fiber formation. Finally, although LA induced the internalization of cell surface β1-integrin, disruption of the raft did not affect the action of LA. Taken together, LA is a promising agent to improve malignant character of bladder cancer cells through regulation of cellular β1-integrin localization.
Here, we focused on the effects of racemic α-lipoic acid on proliferation and adhesion properties of 3Y1 rat fibroblasts and the v-H-ras-transformed derivative, HR-3Y1-2 cells. Racemic α-lipoic acid inhibited proliferation of HR-3Y1-2 but not 3Y1 cells at 0.3 and 1.0 mM. R-(+)-α-lipoic acid also inhibited proliferation of HR-3Y1-2 cells equivalent to that of racemic α-lipoic acid. In addition, racemic α-lipoic acid decreased intracellular reactive oxygen species levels in HR-3Y1 cells but not 3Y1 cells. Next, we evaluated the effects of racemic α-lipoic acid on cell adhesion to fibronectin. The results indicated that racemic α-lipoic acid decreased adhesive ability of HR-3Y1-2 cells to fibronectin-coated plates. As blocking antibody experiment revealed that β1-integrin plays a key role in cell adhesion in this experimental system, the effects of racemic α-lipoic acid on the expression of β1-integrin were examined. The results indicated that racemic α-lipoic acid selectively downregulated the expression of cell surface β1-integrin expression in HR-3Y1-2 cells. Intriguingly, exogenous hydrogen peroxide upregulated cell surface β1-integrin expression in 3Y1 cells. Taken together, these data suggest that reduction of intracellular reactive oxygen species levels by α-lipoic acid could be an effective means of ameliorating abnormal growth and adhesive properties in v-H-ras transformed cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.