Polycystic kidney (PCK) rats exhibit a multiorgan cyst pathology similar to human autosomal recessive polycystic kidney disease, and are proposed as an animal model of Caroli's disease with congenital hepatic fibrosis (CHF). This study investigated the expression and function of selected components of the mitogen activated protein kinase (MAPK) pathway in cultured intrahepatic biliary epithelial cells (BECs) of PCK rats. Compared to the proliferative activity of cultured BECs of control rats, those of the PCK rats were hyperresponsive to epidermal growth factor (EGF). The increase in BEC proliferation was accompanied by overexpression of MAPK/extracellular signal-regulated protein kinase (ERK) kinase 5 (MEK5), and subsequent phosphorylation of ERK5 in vitro. The increased proliferative activity was significantly inhibited by the transfection of short interfering RNA against MEK5 mRNA. An EGF receptor tyrosine kinase inhibitor, gefitinib ("Iressa", ZD1839), also significantly inhibited the abnormal growth of cultured BECs of PCK rats. By contrast, treatment with PD98059 and U0126, inhibitors for MEK1/2, was less effective. These results suggest that the activation of the MEK5-ERK5 cascade plays a pivotal role in the biliary dysgenesis of PCK rats, and also provide insights into the pathogenesis of Caroli's disease with CHF. As the MEK5-ERK5 interaction is highly specific, it may represent a potential target of therapy.
The polycystic kidney (PCK) rat is an animal model of Caroli's disease with congenital hepatic fibrosis, in which the mechanism of progressive hepatic fibrosis remains unknown. This study aimed to clarify the mechanism of hepatic fibrosis of the PCK rat from the viewpoint of the contribution of pathological cholangiocytes. In liver sections of the PCK rats, intrahepatic bile ducts were constituted by two different phenotypes: bile ducts lined by cuboidal-shaped and flat-shaped cholangiocytes. The flat-shaped cholangiocytes showed reduced immunohistochemical expression of the biliary epithelial marker cytokeratin 19 and positive immunoreactivity for vimentin and fibronectin. When cultured cholangiocytes of the PCK rat were treated with transforming growth factor (TGF)-1, a potent inducer of epithelial-mesenchymal transition, induction of vimentin, fibronectin, and collagen expression occurred in the PCK cholangiocytes. Although the TGF-1 treatment reduced cytokeratin 19 expression, the epithelial cell features characterized by the expression of E-cadherin and zonula occludens-1 was maintained, and ␣-smooth muscle actin expression was not induced in the cholangiocytes. Cholangiocytes of the PCK rat may acquire mesenchymal features in response to TGF-1 and participate in progressive hepatic fibrosis by producing extracellular matrix molecules, which seems to be a different event from epithelial-mesenchymal transition.
The polycystic kidney (PCK) rat represents a liver and kidney cyst pathology corresponding to Caroli's disease with congenital hepatic fibrosis and autosomal recessive polycystic kidney disease. We previously reported that an epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib (Iressa), significantly inhibited the abnormal growth of biliary epithelial cells of PCK rats in vitro. This study investigated the effects of gefitinib on cyst pathogenesis of the PCK rat both in vitro and in vivo. A three-dimensional culture model of biliary epithelial cells in the collagen gel matrix was used for in vitro analysis. For in vivo experiments, PCK and control rats were treated with gefitinib between 3 and 10 weeks of age. In vitro, gefitinib had strong inhibitory effects on biliary cyst formation of PCK rats. In vivo, treatment with gefitinib significantly inhibited the cystic dilatation of the intrahepatic bile ducts of PCK rats, which was accompanied by improvement of liver fibrosis. By contrast, no beneficial effects were observed on renal cyst development because of the treatment. These results suggest that signaling pathways mediated by epidermal growth factor receptor are involved in biliary dysgenesis of the PCK rat, with the mechanisms of cyst progression being different between the liver and kidney.
Congenital hepatic fibrosis (CHF) and Caroli's disease are though to result from ductal plate malformation, and the basal laminar components play important roles in biliary differentiation during development. To clarify the involvement of basal laminar components in the ductal plate malformation, this study examined the immunohistochemical expression of laminin and type IV collagen in the livers of CHF and Caroli's disease. Using the polycystic kidney (PCK) rat, an animal model of Caroli's disease with CHF, in vivo and in vitro experiments were also performed. Immunostaining showed that basement membrane expression of laminin and type IV collagen around intrahepatic bile ducts was degraded in CHF, Caroli's disease, and the PCK rats. The degradation of laminin and type IV collagen around bile ducts was also observed in foci of cholangiocarcinoma in situ of Caroli's disease. In vitro, PCK cholangiocytes were found to overexpress plasminogen and a serine proteinase, the tissue-type plasminogen activator (tPA). When PCK cholangiocytes were cultured in Matrigel, the amounts of laminin and collagen in the gel were significantly reduced, and addition of alpha2-antiplasmin in the culture medium inhibited the degradation of laminin and collagen in Matrigel. These results suggest that biliary overexpression of plasminogen and tPA leads to the generation of excessive amounts of plasmin, and subsequent plasmin-dependent lysis of the extracellular matrix molecules may contribute to the biliary dysgenesis in CHF and Caroli's disease, including progressive cystic dilatation of the intrahepatic bile ducts in Caroli's disease. In addition, it is suggested that once cholangiocarcinoma in situ develops in the biliary epithelium of CHF and Caroli's disease, it tends to transform into invasive carcinoma, due to instability of the basement membrane of the bile ducts.
T-3811, the free base of T-3811ME (BMS-284756), a new des-F(6)-quinolone, showed a potent in vitro activity (MIC at which 90% of the isolates tested are inhibited [MIC 90 ], 0.0313 g/ml) against Mycoplasma pneumoniae. The MIC 90 of T-3811 was 4-fold higher than that of clarithromycin but was 4-to 8-fold lower than those of trovafloxacin, gatifloxacin, gemifloxacin, and moxifloxacin and was 16-to 32-fold lower than those of levofloxacin, ciprofloxacin, and minocycline. In an experimental M. pneumoniae pneumonia model in hamsters, after the administration of T-3811ME (20 mg/kg of body weight as T-3811, once daily, orally) for 5 days, the reduction of viable cells of M. pneumoniae in bronchoalveolar lavage fluid was greater than those of trovafloxacin, levofloxacin, and clarithromycin (20 and 40 mg/kg, orally) (P < 0.05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.