The endothelium-dependent vascular relaxation to acetylcholine (ACh) in spontaneously hypertensive rats (SHR) may be impaired because of an imbalance of endothelium-derived relaxing factor and contracting factor. However, the role of the endothelium-dependent hyperpolarization remains undetermined. We examined the ACh-induced hyperpolarization and its contribution to relaxation in arteries of SHR. Membrane potentials were recorded from the mesenteric artery trunk of 6-8-month-old male SHR and also Wistar-Kyoto (WKY) rats. Endothelium-dependent hyperpolarization to ACh was unaffected by NG-nitro-L-arginine, indomethacin, or glibenclamide; was reduced by tetraethylammonium or high K' solution; and was enhanced by low K' solution or methylene blue, thereby indicating that hyperpolarization is not mediated by nitric oxide (endothelium-derived relaxing factor) but is presumably mediated by a hyperpolarizing factor and is due to an opening of K' channels that probably differ from the ATP-sensitive ones. Hyperpolarizations to ACh were markedly reduced in SHR compared with findings in WKY rats (maximum, 8±1 versus 17±1 mV). In addition, under conditions of depolarization with norepinephrine (10-5 M), the ACh-induced hyperpolarization was even less and transient in SHR, while it was large and sustained in WKY rats (6±1 versus 29±2 mV
This study was undertaken to compare age-related changes in endothelium-dependent vascular responses in both hypertensive and normotensive rats. Aorta from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) aged 4-6 weeks (young), 3-6 months (adult), and 12-25 months (old) were examined for relaxation to acetylcholine, adenosine 5'-triphosphate (ATP), and sodium nitroprusside. Rubbed (endothelium denuded) aorta from all groups displayed neither relaxation nor contraction to acetylcholine. Maximal relaxation responses to acetylcholine were reduced progressively with increasing age in unrubbed aorta of both SHR and WKY rats. In addition, acetylcholine caused not only dose-dependent relaxations at lower concentrations but also increases in tension at higher concentrations in unrubbed aorta of old WKY rats as well as adult and old SHR. However, indomethacin completely inhibited the tension development. As a result, aorta treated with indomethacin demonstrated similar acetylcholine-induced, endothelium-dependent relaxations in all groups. The thromboxane A 2 synthetase inhibitor (E)-7-phenyl-7-(3-pyridyl)-6-heptanoic acid (CV-4151) partially but significantly depressed the increases in tension in aorta of old WKY rats. The degrees of endothelium-dependent relaxations to ATP and endothelium-independent relaxations to sodium nitroprusside were almost similar in all groups. These findings suggest that the release of or vascular responsiveness to endothelium-derived relaxing factor in the aorta is well maintained through senescence in both strains and that, in the aorta of not only SHR but also old normotensive WKY rats, the endothelium releases contracting factors that may be thromboxane A 2 and other vasoconstrictor prostanoids. (Hypertension 1989;14:542-548)
Sporadic Parkinson's disease (sPD) is a common neurodegenerative disorder, characterized by selective degeneration of dopaminergic neurons in the substantia nigra. Although the pathogenesis of the disease remains undetermined, phosphorylation of ␣-synuclein and its oligomer formation seem to play a key role. However, the protein kinase(s) involved in the phosphorylation in the pathogenesis of sPD has not been identified. Here, we found that G-protein-coupled receptor kinase 5 (GRK5) accumulated in Lewy bodies and colocalized with ␣-synuclein in the pathological structures of the brains of sPD patients. In cotransfected cells, GRK5 phosphorylated Ser-129 of ␣-synuclein at the plasma membrane and induced translocation of phosphorylated ␣-synuclein to the perikaryal area. GRK5-catalyzed phosphorylation also promoted the formation of soluble oligomers and aggregates of ␣-synuclein. Genetic association study revealed haplotypic association of the GRK5 gene with susceptibility to sPD. The haplotype contained two functional single-nucleotide polymorphisms, m22.1 and m24, in introns of the GRK5 gene, which bound to YY1 (Yin Yang-1) and CREB-1 (cAMP response element-binding protein 1), respectively, and increased transcriptional activity of the reporter gene. The results suggest that phosphorylation of ␣-synuclein by GRK5 plays a crucial role in the pathogenesis of sPD.
Islets were encapsulated into 5% concentration agarose microbeads. The effect of microencapsulation on islet allograft survivals was determined using a streptozotocin-induced diabetic (STZ) mouse and a nonobese diabetic (NOD) mouse as recipients. All five STZ BALB/c mice receiving microencapsulated islets (C57BL/6) maintained normoglycemia indefinitely. When NOD mice were used as recipients of the bioartificial pancreas, four of five grafts (islets from C3H/He) functioned for more than 80 d. Two of five NOD mice maintained normoglycemia until animals were sacrificed at 102 and 192 postoperative d. Microbeads made of commercially available agarose can effectively prolong alloislets functioning in the STZ-diabetic mouse and even in the NOD mouse (animal model of human type I diabetes) without the use of any immunosuppressive drug.
This study was designed to determine the age-related changes in the endothelium-dependent hyperpolarization to acetylcholine (ACh) and its contribution to relaxation in the isolated mesenteric artery from normotensive and hypertensive rats. Membrane potentials and contractions were recorded in arteries from male Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) that were 5-6 wk old (young), 6-8 mo old (adult), and 20-26 mo old (aged). Endothelium-dependent hyperpolarizations produced by ACh, applied both at the resting state of the membrane and under conditions of depolarization with norepinephrine (10(-5) M), were markedly impaired in aged WKY rats, adult SHR, and aged SHR. Endothelium-dependent relaxations to ACh in arterial rings precontracted with 10(-5) M norepinephrine were also impaired in aged WKY rats, adult SHR, and aged SHR even in the presence of indomethacin. Furthermore, in these rats, N omega-nitro-L-arginine, an inhibitor of nitric oxide formation, showed potent inhibitory effects on the relaxations, whereas the 20 mM high K+ solution that reduces hyperpolarization had less pronounced effects. Hyperpolarizations and relaxations to cromakalim (10(-5) M), a K(+)-channel opener, were on the whole preserved in aged rats. It would thus appear that the endothelium-dependent hyperpolarization to ACh is reduced with aging as well as by hypertension, and this would, in part, account for the impaired relaxation to ACh in arteries of both aged rats and hypertensive rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.