In humans and animals, intestinal flora is indispensable for bile acid transformation. The goal of our study was to establish gnotobiotic mice with intestinal bacteria of human origin in order to examine the role of intestinal bacteria in the transformation of bile acids in vivo using the technique of gnotobiology. Eight strains of bile acid-deconjugating bacteria were isolated from ex-germ-free mice inoculated with a human fecal dilution of 10(-6), and five strains of 7alpha-dehydroxylating bacteria were isolated from the intestine of limited human flora mice inoculated only with clostridia. The results of biochemical tests and 16S rDNA sequence analysis showed that seven out of eight bile acid-deconjugating strains belong to a bacteroides cluster (Bacteroides vulgatus, B. distasonis, and B. uniformis), and one strain had high similarity with Bilophila wadsworthia. All five strains that converted cholic acid to deoxycholic acid had greatest similarity with Clostridium hylemonae. A combination of 10 isolated strains converted taurocholic acid into deoxycholic acid both in vitro and in the mouse intestine. These results indicate that the predominant bacteria, mainly Bacteroides, in human feces comprise one of the main bacterial groups for the deconjugation of bile acids, and clostridia may play an important role in 7aplha-dehydroxylation of free-form primary bile acids in the intestine although these strains are not predominant. The gnotobiotic mouse with bacteria of human origin could be a useful model in studies of bile acid metabolism by human intestinal bacteria in vivo.
Germfree (GF) mice were orally inoculated with human fecal suspension or various components of human fecal microbiota. Three weeks after the inoculation, cecal bile acid composition of these mice was examined. More than 80% of total bile acids was deconjugated in the cecal contents of ex-GF mice associated with human fecal dilutions of 10(-2) or 10(-6), or anaerobic growth from a dilution of 10(-6). In these ex-GF mice, deoxycholic acid accounted for about 20% of total bile acids. In the cecal contents of ex-GF mice associated only with clostridia, unconjugated bile acids made up less than 40% of total bile acids, about half of those in other ex-GF groups. However, the percentage of deoxycholic acid in these mice was the same as that in the other groups. These results indicate that dominant anaerobic bacterial combination is efficient for deconjugation of primary bile acids, and that clostridia in the human feces may play an important role in 7alpha-dehydroxylation of unconjugated primary bile acids in the intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.