Numerical models of ocean biogeochemistry are relied upon to make projections about the impact of climate change on marine resources and test hypotheses regarding the drivers of past changes in climate and ecosystems. In large areas of the ocean, iron availability regulates the functioning of marine ecosystems and hence the ocean carbon cycle. Accordingly, our ability to quantify the drivers and impacts of fluctuations in ocean ecosystems and carbon cycling in space and time relies on first achieving an appropriate representation of the modern marine iron cycle in models. When the iron distributions from 13 global ocean biogeochemistry models are compared against the latest oceanic sections from the GEOTRACES program, we find that all models struggle to reproduce many aspects of the observed spatial patterns. Models that reflect the emerging evidence for multiple iron sources or subtleties of its internal cycling perform much better in capturing observed features than their simpler contemporaries, particularly in the ocean interior. We show that the substantial uncertainty in the input fluxes of iron results in a very wide range of residence times across models, which has implications for the response of ecosystems and global carbon cycling to perturbations. Given this large uncertainty, iron fertilization experiments based on any single current generation model should be interpreted with caution. Improvements to how such models represent iron scavenging and also biological cycling are needed to raise confidence in their projections of global biogeochemical change in the ocean.
The authors compare Community Earth System Model results to marine observations for the 1990s and examine climate change impacts on biogeochemistry at the end of the twenty-first century under two future scenarios (Representative Concentration Pathways RCP4.5 and RCP8.5). Late-twentieth-century seasonally varying mixed layer depths are generally within 10 m of observations, with a Southern Ocean shallow bias. Surface nutrient and chlorophyll concentrations exhibit positive biases at low latitudes and negative biases at high latitudes. The volume of the oxygen minimum zones is overestimated.The impacts of climate change on biogeochemistry have similar spatial patterns under RCP4.5 and RCP8.5, but perturbation magnitudes are larger under RCP8.5. Increasing stratification leads to weaker nutrient entrainment and decreased primary and export production (.30% over large areas). The global-scale decreases in primary and export production scale linearly with the increases in mean sea surface temperature. There are production increases in the high nitrate, low chlorophyll (HNLC) regions, driven by lateral iron inputs from adjacent areas. The increased HNLC export partially compensates for the reductions in non-HNLC waters (;25% offset). Stabilizing greenhouse gas emissions and climate by the end of this century (as in RCP4.5) will minimize the changes to nutrient cycling and primary production in the oceans. In contrast, continued increasing emission of CO 2 (as in RCP8.5) will lead to reduced productivity and significant modifications to ocean circulation and biogeochemistry by the end of this century, with more drastic changes beyond the year 2100 as the climate continues to rapidly warm.
BackgroundTo implement personalized medicine, we established a large-scale patient cohort, BioBank Japan, in 2003. BioBank Japan contains DNA, serum, and clinical information derived from approximately 200,000 patients with 47 diseases. Serum and clinical information were collected annually until 2012.MethodsWe analyzed clinical information of participants at enrollment, including age, sex, body mass index, hypertension, and smoking and drinking status, across 47 diseases, and compared the results with the Japanese database on Patient Survey and National Health and Nutrition Survey. We conducted multivariate logistic regression analysis, adjusting for sex and age, to assess the association between family history and disease development.ResultsDistribution of age at enrollment reflected the typical age of disease onset. Analysis of the clinical information revealed strong associations between smoking and chronic obstructive pulmonary disease, drinking and esophageal cancer, high body mass index and metabolic disease, and hypertension and cardiovascular disease. Logistic regression analysis showed that individuals with a family history of keloid exhibited a higher odds ratio than those without a family history, highlighting the strong impact of host genetic factor(s) on disease onset.ConclusionsCross-sectional analysis of the clinical information of participants at enrollment revealed characteristics of the present cohort. Analysis of family history revealed the impact of host genetic factors on each disease. BioBank Japan, by publicly distributing DNA, serum, and clinical information, could be a fundamental infrastructure for the implementation of personalized medicine.
This study suggested the safety of primary PCI with upfront thrombectomy using a novel device in patients with STEMI. The study showed a trend toward improved myocardial perfusion and lower clinical events in patients treated with aspiration. Patients presenting late after STEMI appear to benefit the most from thrombectomy.
Abstract. A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant following the Great East Japan Earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways: direct release from the accident site and atmospheric deposition. A 1 yr, regional-scale simulation of 137Cs activity in the ocean offshore of Fukushima was carried out, the sources of radioactivity being direct release, atmospheric deposition, and the inflow of 137Cs deposited into the ocean by atmospheric deposition outside the domain of the model. Direct releases of 137Cs were estimated for 1 yr after the accident by comparing simulated results and measured activities adjacent to the accident site. The contributions of each source were estimated by analysis of 131I/137Cs and 134Cs/137Cs activity ratios and comparisons between simulated results and measured activities of 137Cs. The estimated total amounts of directly released 131I, 137Cs, and 137Cs were 11.1 ± 2.2 PBq, 3.5 ± 0.7 PBq, and 3.6 ± 0.7 PBq, respectively. Simulated 137Cs activities attributable to direct release were in good agreement with measured 137Cs activities not only adjacent to the accident site, but also in a wide area in the model domain, therefore this implies that the estimated direct release rate was reasonable. Employment of improved nudging data by JCOPE2 improved both the offshore transport result and the reproducibility of 137Cs activities 30 km offshore. On the other hand, simulated 137Cs activities attributable to atmospheric deposition were low compared to measured activities. The rate of atmospheric deposition into the ocean was underestimated because of a lack of measurements of deposition into the ocean when atmospheric deposition rates were being estimated. Simulated 137Cs activities attributable to the inflow of 137Cs deposited into the ocean outside the domain of the model were in good agreement with measured activities in the open ocean within the model domain after June 2012. The consideration of inflow is important to simulate the 137Cs activity in this model region in the later period of the simulation. The contribution of inflow increased with time and was dominant (more than 99%) by the end of February 2012. The activity of directly released 137Cs, however, decreased exponentially with time and was detectable only in the coastal zone by the end of February 2012.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.