Bidirectional transformations provide a novel mechanism for synchronizing and maintaining the consistency of information between input and output. Despite many promising results on bidirectional transformations, these have been limited to the context of relational or XML (tree-like) databases. We challenge the problem of bidirectional transformations within the context of graphs, by proposing a formal definition of a well-behaved bidirectional semantics for UnCAL, i.e., a graph algebra for the known UnQL graph query language. The key to our successful formalization is full utilization of both the recursive and bulk semantics of structural recursion on graphs. We carefully refine the existing forward evaluation of structural recursion so that it can produce sufficient trace information for later backward evaluation. We use the trace information for backward evaluation to reflect in-place updates and deletions on the view to the source, and adopt the universal resolving algorithm for inverse computation and the narrowing technique to tackle the difficult problem with insertion. We prove our bidirectional evaluation is well-behaved. Our current implementation is available online and confirms the usefulness of our approach with nontrivial applications.
Bidirectional transformations provide a novel mechanism for synchronizing and maintaining the consistency of information between input and output. Despite many promising results on bidirectional transformations, these have been limited to the context of relational or XML (tree-like) databases. We challenge the problem of bidirectional transformations within the context of graphs, by proposing a formal definition of a well-behaved bidirectional semantics for UnCAL, i.e., a graph algebra for the known UnQL graph query language. The key to our successful formalization is full utilization of both the recursive and bulk semantics of structural recursion on graphs. We carefully refine the existing forward evaluation of structural recursion so that it can produce sufficient trace information for later backward evaluation. We use the trace information for backward evaluation to reflect in-place updates and deletions on the view to the source, and adopt the universal resolving algorithm for inverse computation and the narrowing technique to tackle the difficult problem with insertion. We prove our bidirectional evaluation is well-behaved. Our current implementation is available online and confirms the usefulness of our approach with nontrivial applications.
Matsuda et al. [2007, ICFP] and Voigtländer [2009, POPL] introduced two techniques that given a source-to-view function provide an update propagation function mapping an original source and an updated view back to an updated source, subject to standard consistency conditions. Being fundamentally different in approach, both techniques have their respective strengths and weaknesses. Here we develop a synthesis of the two techniques to good effect. On the intersection of their applicability domains we achieve more than what a simple union of applying the techniques side by side delivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.