Chromosomal gene replacement in cyanobacteria often relies upon the availability of drug resistance markers, and thus multiple replacements have been restricted. Here, a versatile gene replacement system without this restriction is reported in a unicellular cyanobacterium, Synechococcus sp. PCC 7942. The system is based upon the dominance of a streptomycin-sensitive rps12 gene encoding a ribosomal S12 protein over a streptomycin-resistant rps12-R43 allele with a Lys-43 Arg substitution. To demonstrate the utility of this method, a cassette consisting of the wild-type rps12 gene and a kan gene conferring kanamycin resistance was integrated into the rps12-R43 mutant at the psbAI locus encoding photosystem II D1 protein, resulting in streptomycinsensitive merodiploids. Despite spontaneous gene conversion in these merodiploids to produce streptomycin-resistant progeny at frequencies ranging from 1i10 N5 to 5i10 N5 , homologous recombination could be induced by transforming the merodiploids with template plasmids carrying psbAI 5' and 3' non-coding sequences flanking the D1 coding sequence, which was then replaced by either the gfp ORF for a green fluorescent protein or a precise deletion. Depending on the replication ability of the template plasmids, at most 3-16 % of streptomycin-resistant progeny of the merodiploids after transformation were homogenote recombinants with concomitant loss of the kan gene, even in these polyploid cyanobacteria. The rps12-mediated gene replacement thus makes it possible to construct mutants free from drug resistance markers and opens a way to create cyanobacterial strains bearing an unlimited number of gene replacements.
Multiple targeted gene replacements are often required for functional analyses of cyanobacterial genomes. For this purpose, we previously devised a simple genetic method, termed rps12-mediated gene replacement, in a cyanobacterium Synechococcus elongatus PCC 7942 for construction of mutants free from drug resistance markers. Here, we improved the method by employing a heterologous rps12 gene encoding a ribosomal protein S12 from Synechocystis sp. PCC 6803. Dominant streptomycin-sensitive phenotype of the Synechocystis rps12 gene was manifested only when it was expressed under the strong promoter of psbAI gene in S. elongatus PCC 7942 bearing a streptomycin-resistant rps12 allele. Transformation of the rps12 heteroallelic strains with non-replicating template plasmids permitted the selection of recombinants with gene replacement at frequencies up to 50% among streptomycin-resistant progeny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.