We measured the proton conductivity of bulk graphite oxide (GO'), a graphene oxide/proton hybrid (GO-H), and a graphene oxide (GO) nanosheet for the first time. GO is a well-known electronic insulator, but for proton conduction we observed the reverse trend, as it exhibited superionic conductivity. The hydrophilic sites present in GO as -O-, -OH, and -COOH functional groups attract the protons, which propagate through hydrogen-bonding networks along the adsorbed water film. The proton conductivities of GO' and GO-H at 100% humidity were ∼10(-4) and ∼10(-5) S cm(-1), respectively, whereas that for GO was amazingly high, nearly 10(-2) S cm(-1). This finding indicates the possibility of GO-based perfect two-dimensional proton-conductive materials for applications in fuel cells, sensors, and so on.
Supporting Information. Raman spectra, UVÀvis spectra, reaction equations, photoelectrochemical data, XPS spectra, and UPS spectra. This material is available free of charge via the Internet at http://pubs.acs.org.
Graphene oxide (GO) nanosheets were reduced by UV irradiation in H2 or N2 under mild conditions (at room temperature) without a photocatalyst. Photoreduction proceeded even in an aqueous suspension of nanosheets. The GO nanosheets reduced by this method were analyzed by X-ray photoelectron spectroscopy and Raman spectroscopy. It was found that epoxy groups attached to the interiors of aromatic domains of the GO nanosheet were destroyed during UV irradiation to form relatively large sp2 islands resulting in a high conductivity. I-V curves were measured by conductive atomic force microscopy (AFM; perpendicular to a single nanosheet) and a two-electrode system (parallel to the nanosheet). They revealed that photoreduced GO nanosheets have high conductivities, whereas nonreduced GO nanosheets are nearly insulating. Ag+ adsorbed on GO nanosheets promoted the photoreduction. This photoreduction method was very useful for photopatterning a conducting section of micrometer size on insulating GO. The developed photoreduction process based on a photoreaction will extend the applications of GO to many fields because it can be performed in mild conditions without a photocatalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.