We reported that the endoplasmic reticulum (ER) stress pathway involving CHOP, a member of the C/EBP transcription factor family, plays a key role in nitric oxide (NO)-mediated apoptosis of macrophages and pancreatic b cells. We also showed that the cytosolic chaperone pair of hsp70 and dj1 (hsp40/hdj-1) or dj2 (HSDJ/hdj-2) prevents NO-mediated apoptosis upstream of cytochrome c release from mitochondria. To analyze roles of the chaperone pair in preventing apoptosis, RAW 264.7 macrophages stably expressing hsp70 and dj1 or dj2 were established. The chaperone pair prevented LPS/IFN-c-induced and NO-mediated apoptosis downstream of CHOP induction. hsp70 mutant protein lacking the ATPase domain or the C-terminal EEVD sequence were not effective in preventing CHOP-induced apoptosis. A mutant dj2 lacking the C-terminal prenylation CaaX motif, was also not effective. When wild-type RAW 264.7 cells were treated with LPS/IFN-c, NOmediated apoptosis was induced, and proapoptotic Bcl-2 family protein Bax was translocated from cytosol to mitochondria. This translocation was prevented in cells stably expressing hsp70/dj2, and in CHOP knockout cells. Overexpression of CHOP in wild-type cells also induced translocation of Bax and this translocation was prevented in cells expressing hsp70/dj2. CHOP-induced apoptosis was prevented by Bax knock-down. Coimmunoprecipitation experiments showed that Bax interacts with both hsp70 and dj1/dj2. ATPase domain of hsp70 was necessary for the binding with Bax. These findings indicate that CHOP-induced apoptosis is mediated by translocation of Bax from the cytosol to the mitochondria, and hsp70/dj1 or dj2 chaperone pair prevents apoptosis by interacting with Bax and preventing translocation to the mitochondria.
Objective— Cardiovascular disease (CVD), the most common morbidity resulting from atherosclerosis, remains a frequent cause of death. Efforts to develop effective therapeutic strategies have focused on vascular inflammation as a critical pathology driving atherosclerosis progression. Nonetheless, molecular mechanisms underlying this activity remain unclear. Here, we ask whether angiopoietin-like protein 2 (Angptl2), a proinflammatory protein, contributes to vascular inflammation that promotes atherosclerosis progression. Approach and Results— Histological analysis revealed abundant Angptl2 expression in endothelial cells and macrophages infiltrating atheromatous plaques in patients with cardiovascular disease. Angptl2 knockout in apolipoprotein E–deficient mice ( ApoE −/− / Angptl2 −/− ) attenuated atherosclerosis progression by decreasing the number of macrophages infiltrating atheromatous plaques, reducing vascular inflammation. Bone marrow transplantation experiments showed that Angptl2 deficiency in endothelial cells attenuated atherosclerosis development. Conversely, ApoE −/− mice crossed with transgenic mice expressing Angptl2 driven by the Tie2 promoter ( ApoE −/− /Tie2- Angptl2 Tg), which drives Angptl2 expression in endothelial cells but not monocytes/macrophages, showed accelerated plaque formation and vascular inflammation because of increased numbers of infiltrated macrophages in atheromatous plaques. Tie2- Angptl2 Tg mice alone did not develop plaques but exhibited endothelium-dependent vasodilatory dysfunction, likely because of decreased production of endothelial cell–derived nitric oxide. Conversely, Angptl2 −/− mice exhibited less severe endothelial dysfunction than did wild-type mice when fed a high-fat diet. In vitro, Angptl2 activated proinflammatory nuclear factor-κB signaling in endothelial cells and increased monocyte/macrophage chemotaxis. Conclusions— Endothelial cell–derived Angptl2 accelerates vascular inflammation by activating proinflammatory signaling in endothelial cells and increasing macrophage infiltration, leading to endothelial dysfunction and atherosclerosis progression.
The tumor microenvironment can enhance the invasive capacity of tumor cells. We showed that expression of angiopoietin-like protein 2 (ANGPTL2) in osteosarcoma (OS) cell lines increased and the methylation of its promoter decreased with time when grown as xenografts in mice compared with culture. Compared with cells grown in normal culture conditions, the expression of genes encoding DNA demethylation-related enzymes increased in tumor cells implanted into mice or grown in hypoxic, serum-starved culture conditions. ANGPTL2 expression in OS cell lines correlated with increased tumor metastasis and decreased animal survival by promoting tumor cell intravasation mediated by the integrin α5β1, p38 mitogen-activated protein kinase, and matrix metalloproteinases. The tolloid-like 1 (TLL1) protease cleaved ANGPTL2 into fragments in vitro that did not enhance tumor progression when overexpressed in xenografts. Expression of TLL1 was weak in OS patient tumors, suggesting that ANGPTL2 may not be efficiently cleaved upon secretion from OS cells. These findings demonstrate that preventing ANGPTL2 signaling stimulated by the tumor microenvironment could inhibit tumor cell migration and metastasis.
Arginase exists in two isoforms. Liver-type arginase ciency [24]. Recently, arginase activity as well as nitric oxide (arginase I) is expressed almost exclusively in the liver and synthase (NOS) activity was found to be induced in murine catalyzes the last step of urea synthesis, whereas the nonhepatic precursor synthesized in vitro was imported into isolatedWe report here the cloning of a full-length cDNA for humitochondria and proteolytically processed, mRNA for human arginase II was present in the kidney and other tissues, but was man arginase II and a partial cDNA for the rat enzyme. The not detected in the liver. Arginas¢ II mRNA was coinduced with human enzyme contains 354 amino acid residues including the nitric oxide synthase mRNA in routine macrophage-like RAW putative NH2-terminal mitochondria-targeting presequence. cells by lipopolysaccharide. This induction was enhancedMitochondrial import of the arginase II precursor synthesized by dexamethasone and dibutyryl cAMP, and was prevented by in vitro with concomitant proteolytic processing was shown. interferon-y. Possible roles of arginase II in NO synthesis areInduction of mRNAs for arginase II and inducible form of discussed.NOS (iNOS or NOS2) by LPS and other compounds in RAW 264.7 cells was also reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.