Previous studies have shown that blood flow-restricted low-intensity resistance training (BFR-RT) causes muscle hypertrophy while maintaining arterial function in young adults. We examined the effects of BFR-RT on muscle size and arterial stiffness in older adults. Healthy subjects (ages 61-84 years) were divided into BFR-RT (n = 9) or non-training control (CON; n = 10) groups. The BFR-RT group performed 20% and 30%, respectively, of one-repetition maximal (1-RM) knee extension and leg press exercises, 2 days/wk for 12 weeks. The BFR-RT group wore elastic cuffs (120-270 mmHg) on both legs during training. Magnetic resonance imaging-measured muscle cross-sectional area (CSA), 1-RM strength, chair stand (CS) test, and cardio-ankle vascular index testing (CAVI), an index of arterial stiffness, were measured before and 3-5 days after the final training session. Muscle CSA of the quadriceps (8.0%), adductors (6.5%), and gluteus maximus (4.4%), leg extension and leg press 1-RM strength (26.1% and 33.4%), and CS performance (18.3%) improved (P < 0.05) in the BFR-RT group, but not in the CON group. In CAVI testing, there were no changes in both two groups. In conclusion, BFR-RT improves muscle CSA as well as maximal muscle strength, but does not negatively affect arterial stiffness or humeral coagulation factors in older adults.
We examined the effect of low-load, elastic band resistance training with blood flow restriction (BFR) on muscle size and arterial stiffness in older adults. Healthy older adults (aged 61-85 years) were divided into BFR training (BFR-T, n = 9) or non-BFR training (CON-T, n = 8) groups. Both groups performed low-load arm curl and triceps down exercises (four sets, total 75 repetitions for each) using an elastic band, 2 d/wk for 12 weeks. The BFR-T group wore inflated pneumatic elastic cuffs (120-270 mm Hg) on both arms during training. Magnetic resonance imaging-measured muscle cross-sectional area of the upper arm, maximum voluntary isometric contraction of the elbow flexors and extensors, cardio-ankle vascular index testing, and ankle-brachial pressure index were measured before and 3-5 days after the final training session. Muscle cross-sectional area of the elbow flexors (17.6%) and extensors (17.4%) increased, as did elbow flexion and elbow extension maximum voluntary isometric contraction (7.8% and 16.1%, respectively) improved (p < .05) in the BFR-T group, but not in the CON-T group. In cardio-ankle vascular index and ankle-brachial pressure index testing, there were no changes between pre- and post-results in either group. In conclusion, elastic band BFR-T improves muscle cross-sectional area as well as maximal muscle strength but does not negatively affect arterial stiffness in older adults.
Low-load resistance exercise to exhaustion is an effective method for promoting muscle swelling regardless of BFR. Furthermore, our data indicate that the increase in muscle swelling for both NBFR and BFR is maintained even 60 min after the exercise.
Low-intensity resistance exercise can effectively induce muscle hypertrophy and increases in strength when combined with moderate blood flow restriction (BFR). As this type of exercise does not require lifting heavy weights, it might be a feasible method of cardiac rehabilitation, in which resistance exercise has been recommended to be included. Although previous studies with healthy subjects showed relative safety of BFR exercise, we cannot exclude the possibility of unfavourable effects in patients with cardiovascular disease. We therefore aimed to investigate haemostatic and inflammatory responses to BFR exercise in patients with ischaemic heart disease (IHD). Nine stable patients with IHD who were not taking anticoagulant drugs performed four sets of knee extension exercise at an intensity of 20% one-repetition maximum (1RM) either with or without BFR. Blood samples were taken before, immediately after and 1 h after the exercise session and analysed for noradrenaline, D-dimer, fibrinogen/fibrin degradation products (FDP) and high-sensitive C-reactive protein (hsCRP). Plasma noradrenaline concentration increased after the exercise, and the increase was significantly larger after the exercise with BFR than without BFR. On the other hand, increases in concentrations of plasma D-dimer and serum hsCRP were independent of the condition. However, increases in D-dimer and hsCRP were no longer observed after plasma volume correction, suggesting that hemoconcentration was responsible for these increases. Plasma FDP concentration did not change after the exercise. These results suggest that applying BFR during low-intensity resistance exercise does not affect exercise-induced haemostatic and inflammatory responses in stable IHD patients.
We examined the effect of elastic band training with blood flow restriction (BFR) on thigh muscle size and vascular function in older women. Older women were divided into three groups: low-intensity elastic band BFR training (BFR-Tr, n = 10), middleto high-intensity elastic band training (MH-Tr, n = 10), and no training (Ctrl, n = 10) groups. BFR-Tr and MH-Tr groups performed squat and knee extension exercises using elastic band, 2 days/week for 12 weeks. During BFR-Tr exercise session, subjects wore pressure cuffs around the most proximal region of both thighs. The following measurements were taken before (pre) and 3-5 days after (post) the final training session: MRI-measured muscle cross-sectional area (CSA) at mid-thigh, maximum voluntary isometric contraction (MVIC) of knee extension, central systolic blood pressure (c-SBP), central-augmentation index (c-AIx), cardio-ankle vascular index testing (CAVI), ankle-brachial pressure index (ABI). Quadriceps muscle CSA (6.9%) and knee extension MVIC (13.7%) were increased (p < 0.05) in the BFR-Tr group, but not in the MH-Tr and the Ctrl groups. Regarding c-SBP, c-AIx, CAVI and ABI, there were no changes between pre- and post- results among the three groups. Elastic band BFR training increases thigh muscle CSA as well as maximal muscle strength, but does not decrease vascular function in older women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.