Abstract-Proposed new actuation mechanism realizes active or semi-active mobility for flexible long cables such as fiberscopes and scope cameras. A ciliary vibration mechanism was developed using flexible ciliary tapes that can be attached easily to existing cables. Driving characteristics of the active cables were confirmed through experiments and numerical analyses. Finally, the actuation mechanism was applied for an advanced scope camera that can reduce friction with obstacles and avoid stuck or tangled cables.
The active scope camera we proposed has active mobility using a ciliary vibration drive mechanism for long flexible cables. The physical details have yet to be clarified. We determined it based on detailed physical phenomena to design an optimal ciliary vibration drive. We discuss the reasons for design efficiency based on the analysis of dynamic models of ciliary parts, focusing on (1) the characteristic vibration of the cilia and (2) stick-slip contact. We constructed a pseudo linear spring model and a stick-slip friction model to evaluate these phenomena. We determined optimal driving vibration frequencies and the inclined angle of cilia through experiments and analysis. Qualitative comparisons with the dynamic models and the results of experiments indicated the effective physical factors of the activation mechanism. A prototype of the active scope camera showed good performance in practical rescue activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.