The present study developed an unsteady RANS approach based on the lattice Boltzmann method (LBM), which can perform direct aeroacoustic simulations of low-speed fans at lower computational cost compared with the conventional LBM-LES approach. In this method, the k-ω turbulence
model is incorporated into the LBM flow solver, where the transport equations of k and ω are also computed by the lattice Boltzmann method, similar to the Navier-Stokes equations. In addition, moving boundaries such as fan rotors are considered by a direct-forcing immersed boundary method.
This numerical method was validated in a two-dimensional simulation of a cross-flow fan. As a result, the simulation was able to capture an eccentric vortex structure in the rotor, and the pressure rise by the work of the rotor can be reproduced. Also, the peak sound of the blade passing frequency
can be successfully predicted by the present method. Furthermore, the simulation results showed that the peak sound is generated by the interaction between the rotor blade and the flow around the tongue part of the casing.
Recently, the lattice Boltzmann method (LBM) is being applied in turbomachinery field, regarded as a good candidate for tool of flow simulation as well as aerodynamic sound analysis.
For better prediction of broadband noise with high frequecy, which is generally generated in high Reynolds number flows, not only high grid resolution is required to capture very small eddies of the sound source inside the turbulent boundary layer, but also the computation of acoustic field is often needed. In such case, the direct simulation of flow field and acoustic field is straight-forward and effective. However, the computational cost becomes extremely expensive. Moreover, for low Mach number flows the compressible Navier-Stokes simulation not only requires high-order scheme which is unsuitable for parallel computation, but also suffers from stiff problem. LBM is suitable for such simulation thanks to its advantages.
In the present study, a large-scale numerical simulation of flow field around a half-ducted propeller fan is conducted with LBM, and its result is validated by comparing with the experimental result.
Recently, the cooling system of hydraulic excavator is often designed using the thermal and fluid analysis to improve the cooling performance. The reliability of the analysis results is important, since it directly influences on the efficiency of development. In the present study, the uncertain parameters were estimated using the data assimilation method to increase the reliability of the thermal and fluid analysis in an engine room of a hydraulic excavator.
The ensemble Kalman filter (EnKF) was adapted as a data assimilation method, and the thermal and fluid analysis was conducted with the three-dimensional steady simulation based on the Reynolds-average Navier-Stokes equations. The estimated parameters were set to the total heat quantities released by heat exchangers and the flow rates of the coolants. The total heat quantity is a parameter used for the heat release calculation of a heat exchanger, and the flow rate of a coolant is specified at the inlet boundary. As measurement data, temperatures of coolants which were measured at the upstream and downstream of the heat exchangers were used. Initial parameters were generated by setting parameter values in a random manner.
The simulation using estimated parameters successfully predicted temperatures at the heat exchangers, where the maximum error was 3K. In addition, the reductions of the standard deviations of the uncertain parameters were confirmed. That means the reliability of the simulation was increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.