The thermal deactivation
of engine-aged Pd/CeO2–ZrO2 three-way
catalysts was studied by chassis-dynamometer driving
test cycles with cold start and in situ diffuse reflectance
spectroscopy (DRS). The extent of the catalyst deactivation after
engine-aging at 800–1000 °C was correlated with the microstructural
evolution, which was analyzed by X-ray diffraction, X-ray absorption
spectroscopy, electron microscopy, and a chemisorption technique.
This suggests that deactivation is caused by degradation of the catalytically
active sites in the three-phase boundary (TPB) region, where Pd, CeO2–ZrO2, and the gas phase meet. The time-resolved in situ DRS revealed that the reoxidation of Pd metal under
fluctuating air-to-fuel ratios was retarded relative to the reduction
of Pd oxide. The retardation is attributable to the oxygen storage
in CeO2–ZrO2. In the fresh catalyst with
a high dispersion, most Pd was close to the TPB. Conversely, after
engine-aging at elevated temperatures, the retardation effect was
less pronounced with respect to Pd particle growth. Grown into large
Pd particles, the Pd at sufficient distances from the TPB was no longer
affected by the oxygen storage. Consequently, from the ratios of the
initial rate constants of the Pd oxidation and reduction under fluctuating
air-to-fuel ratio conditions, we can understand the quality and/or
quantity of the TPB site in engine-aged catalysts. This measure provides
a useful index of the extent of catalyst deactivation.
A size and condensation controlled Pd nanoparticle is reported. The Pd nanoparticles are prepared by a gas condensation method with He gas, so called dry process. A fabrication of the nanoparticle by means of the dry process is an excellent way, because there are little contaminations on the most lateral surface of the nanoparticle than the nanoparticle by the wet process. Characterizations by TEM and AFM show that the fabricated Pd nanoparticle has a spherical shape, a few nm size in diameter and highly dispersed on the substrate. It is found that there are two chemical states in the Pd nanoparticle. One is an oxidized part at the surface and the other is a bulk part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.