Pt-based nanostructured electrocatalysts supported on carbon black have been widely studied for the oxygen reduction reaction (ORR), which occurs at the cathode in polymer electrolyte fuel cells. Because sluggish ORR kinetics are known to govern the cell performance, there is a need to develop highly active and durable electrocatalysts. The ORR activity of Pt-based electrocatalysts can be improved by controlling their morphology and alloying Pt with transition metals such as Ni. Improving the catalyst durability remains challenging and there is a lack of catalyst design concepts and synthetic strategies. We report the enhancement of the ORR activity and durability of a nanostructured Pt–Ni electrocatalyst by strong metal/support interactions with a nitrogen-doped carbon (NC) support. Pt–Ni rhombic dodecahedral nanoframes (NFs) were immobilized on the NC support and showed higher ORR electrocatalytic activity and durability in acidic media than that supported on a nondoped carbon black. Durability tests demonstrated that NF/NC showed almost no activity loss even after 50 000 potential cycles under catalytic conditions, and the Ni dissolution from the NFs was suppressed at the NC support, as confirmed by energy dispersive X-ray spectroscopy analysis. Physicochemical measurements including surface-enhanced infrared absorption spectroscopy of surface-adsorbed CO revealed that the strong metal/support interactions of the NF with the NC support caused the downshift of the d-band center position of the surface Pt. Our findings demonstrate that tuning the electronic structure of nanostructured Pt alloy electrocatalysts via the strong metal/support interactions with heteroatom-doped carbon supports will allow the development of highly active and robust electrocatalysts.
Pt-based nanostructures immobilized on carbon supports have been widely used as electrocatalysts. Their catalytic activity can be improved by support modification including nitrogen doping and coating with nitrogen-containing polymers, where nitrogen atoms possibly interact with surface Pt atoms at a catalyst/support interface. To understand electronic effects of nitrogen-doped and polymer-coated carbon supports on the catalytic activity of Pt-based nanostructured catalysts, we prepared Pt 3 Ni nanoframes (NFs) supported on polybenzimidazole (PBI)-coated and uncoated carbon nanotubes for the oxygen reduction reaction (ORR), and then compared their catalytic activities and electronic properties with those of NFs immobilized on nitrogen-doped and undoped carbon supports. Although both PBI-coating and nitrogen-doping approaches improved the catalytic activity of NFs, ex situ X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy revealed that nitrogen doping showed electronic effects on NFs, whereas PBI-coating showed almost no impact on the electronic state of NFs but stabilized Pt(OH) ad species under electrochemical conditions. Our studies demonstrate that difference in microscopic environments of nitrogen atoms at the catalyst/ support interface is highly sensitive to the electronic effects of supports on Pt-based electrocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.