SUMMARYThe Hippo signaling pathway plays an important role in regulation of cell proliferation. Cell density regulates the Hippo pathway in cultured cells; however, the mechanism by which cells detect density remains unclear. In this study, we demonstrated that changes in cell morphology are a key factor. Morphological manipulation of single cells without cell-cell contact resulted in flat spread or round compact cells with nuclear or cytoplasmic Yap, respectively. Stress fibers increased in response to expanded cell areas, and F-actin regulated Yap downstream of cell morphology. Cell morphology-and F-actin-regulated phosphorylation of Yap, and the effects of F-actin were suppressed by modulation of Lats. Our results suggest that cell morphology is an important factor in the regulation of the Hippo pathway, which is mediated by stress fibers consisting of F-actin acting upstream of, or on Lats, and that cells can detect density through their resulting morphology. This cell morphology (stress-fiber)-mediated mechanism probably cooperates with a cell-cell contact (adhesion)-mediated mechanism involving the Hippo pathway to achieve density-dependent control of cell proliferation.
Newly developed fabrication technique of thermoresponsive surface using RAFT-mediated block copolymerization and photolithography achieved stripe-like micropatterning of poly(N-isopropylacrylamide) (PIPAAm) brush domains and poly(N-isopropylacrylamide)-b-poly(N-acryloylmorpholine) domains. Normal human dermal fibroblasts were aligned on the physicochemically patterned surfaces simply by one-pot cell seeding. Fluorescence images showed the well-controlled orientation of actin fibers and fibronectin in the confluent cell layers with associated extracellular matrix (ECM) on the surfaces. Furthermore, the aligned cells were harvested as a tissue-like cellular monolayer, called "cell sheet" only by reducing temperature below PIPAAm's lower critical solution temperature (LCST) to 20 °C. The cell sheet harvested from the micropatterned surface possessed a different shrinking rate between vertical and parallel sides of the cell alignment (approximately 3:1 of aspect ratio). This indicates that the cell sheet maintains the alignment of cells and related ECM proteins, promising to show the mechanical and biological aspects of cell sheets harvested from the functionalized thermoresponsive surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.