The crystal structure of the heterotrimeric quinohemoprotein amine dehydrogenase from Paracoccus denitrificans has been determined at 2.05-Å resolution. Within an 82-residue subunit is contained an unusual redox cofactor, cysteine tryptophylquinone (CTQ), consisting of an orthoquinone-modified tryptophan side chain covalently linked to a nearby cysteine side chain. The subunit is surrounded on three sides by a 489-residue, four-domain subunit that includes a diheme cytochrome c. Both subunits sit on the surface of a third subunit, a 337-residue seven-bladed -propeller that forms part of the enzyme active site. The small catalytic subunit is internally crosslinked by three highly unusual covalent cysteine to aspartic or glutamic acid thioether linkages in addition to the cofactor crossbridge. The catalytic function of the enzyme as well as the biosynthesis of the unusual catalytic subunit is discussed.
A new quinohemoprotein amine dehydrogenase from Paracoccus denitrificans IFO 12442 was isolated and characterized in views of biochemistry and electrochemistry. This enzyme exists in periplasm and catalyzes the oxidative deamination of primary aliphatic and aromatic amines. n-Butylamine or benzylamine as a carbon and energy source strongly induces the expression of the enzyme. Carbonyl reagents inhibit the enzyme activity irreversibly. This enzyme is a heterodimer constituted of alpha and beta subunits with the molecular mass of 59.5 and 36.5 kDa, respectively. UV-vis and EPR spectroscopy, and the quinone-dependent redox cycling and heme-dependent peroxidative stains of SDS-PAGE bands revealed that the alpha subunit contains one quinonoid cofactor and one heme c per molecule, while the beta subunit has no prosthetic group. The redox potential of the heme c moiety was determined to be 0.192 V vs NHE at pH 7.0 by a mediator-assisted continuous-flow column electrolytic spectroelectrochemical technique. The analysis of the substrate titration curve allowed the evaluation of the redox potential of the quinone/semiquinone and semiquinone/quinol redox couples as 0.19 and 0.11 V, respectively.
An electrode modified with immobilized whole cells of Desulfovibrio vulgaris (Hildenborough) produces an S-shaped voltammogram with both cathodic- and anodic-catalytic-limiting currents in a methyl viologen-containing buffer saturated with H2. Methyl viologen penetrates into the bacterial cells to serve as an electron carrier in the reversible reaction of hydrogenase in the cells and functions as an electron-transfer mediator between the bacterial cells and the electrode, thus producing the catalytic currents for the evolution and consumption of H2. An equation for the catalytic current that takes into account the reversible hydrogenase reaction explains well the shape of the voltammogram. The potential at null current on the voltammogram agrees with the potential determined by potentiometry with the same electrode, which is equal to the redox potential of the H+/H2 couple in the solution--the standard potential of a hydrogen electrode at the pH of the solution. When D. vulgaris cells are suspended in an argon-saturated buffer containing methyl viologen, the suspension produces a catalytic current at a bare glassy carbon electrode for the evolution of H2. Analysis of the current by a theory for a catalytic current for a unidirectional nonlinear enzyme catalysis allows us to determine the kinetic parameters of the reaction between methyl viologen and hydrogenase in intact D. vulgaris cells. Thus we obtain the apparent Michaelis constant for methyl viologen cation radical, K'MV.+ = 0.16 mM, and the apparent catalytic constant (that is, the turnover number per D. vulgaris cell), zkcat,H+ = 1.2 x 10(7) s-1, for the H2 evolution reaction at pH 5.5 and at 25 degrees C, z being the number of hydrogenases contained in a D. vulgaris cell. The bimolecular reaction rate constant, kcat,H+/K'MV.+, of the reaction between methyl viologen cation radical and oxidized hydrogenase in intact D. vulgaris cells is estimated as 4.2 x 10(7) M-1 s-1. Similarly, the bimolecular reaction rate constant, kcat,H2/K'MV2+, of the reaction between methyl viologen and reduced hydrogenase is estimated to be 1.2 x 10(7) M-1 s-1 at pH 9.5 and 25 degrees C. Both rate constants are large enough for the reactions to be diffusion-limited processes.
SUMMARYWe describe the recent progress on a Nb nine-layer fabrication process for large-scale single flux quantum (SFQ) circuits. A device fabricated in this process is composed of an active layer including Josephson junctions (JJ) at the top, passive transmission line (PTL) layers in the middle, and a DC power layer at the bottom. We describe the process conditions and the fabrication equipment. We use both diagnostic chips and shift register (SR) chips to improve the fabrication process. The diagnostic chip was designed to evaluate the characteristics of basic elements such as junctions, contacts, resisters, and wiring, in addition to their defect evaluations. The SR chip was designed to evaluate defects depending on the size of the SFQ circuits. The results of a long-term evaluation of the diagnostic and SR chips showed that there was fairly good correlation between the defects of the diagnostic chips and yields of the SRs. We could obtain a yield of 100% for SRs including 70,000 JJs. These results show that considerable progress has been made in reducing the number of defects and improving reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.