De novo steroidogenesis from cholesterol is a conserved property of vertebrate brains, and such steroids synthesized de novo in the brain are called neurosteroids. The identification of neurosteroidogenic cells is essential to the understanding of the physiological role of neurosteroids in the brain. We have demonstrated recently that neuronal neurosteroidogenesis occurs in the brain and indicated that the Purkinje cell actively synthesizes several neurosteroids de novo from cholesterol in vertebrates. Interestingly, in the rat, this neuron actively synthesizes progesterone de novo from cholesterol only during neonatal life, when cerebellar cortical formation occurs most markedly. Therefore, in this study, the possible organizing actions of progesterone during cerebellar development have been examined. In vitro studies using cerebellar slice cultures from newborn rats showed that progesterone promotes dose-dependent dendritic outgrowth of Purkinje cells but dose not affect their somata. This effect was blocked by the anti-progestin RU 486 [mifepristone; 17-hydroxy-11-(4-methylaminophenyl)-17␣-(1-propynyl) estra-4,9-dien-3 one-6-7]. In vivo administration of progesterone to pups further revealed an increase in the density of Purkinje spine synapses electron microscopically. In contrast to progesterone, there was no significant effect of 3␣,5␣-tetrahydroprogesterone, a progesterone metabolite, on Purkinje cell development. Reverse transcription-PCR-Southern and immunocytochemical analyses showed that intranuclear progesterone receptors were expressed in Purkinje cells. These results suggest that progesterone promotes both dendritic outgrowth and synaptogenesis in Purkinje cells through intranuclear receptor-mediated mechanisms during cerebellar development. Such organizing actions may contribute to the formation of the cerebellar neuronal circuit.
Neuropeptides similar to the molluscan cardioexcitatory Phe-Met-Arg-Phe-NH2 have been identified in several vertebrates and characterized by the RFa motif at their C terminus (RFa peptides). In this study, we sought to identify an amphibian hypothalamic RFa peptide that may regulate secretion of hormones by the anterior pituitary gland. An acid extract of bullfrog hypothalami was passed through C-18 reversed-phase cartridges, and then the retained material was subjected to HPLC, initially using a C-18 reversed-phase column. RFa immunoreactivity was measured in the eluted fractions by a dot immunoblot assay employing an antiserum raised against RFa. Immunoreactive fractions were subjected to further cation exchange and reversed-phase HPLC purification. The isolated peptide was a novel RFa peptide and shown to have the sequence Ser-Leu-Lys-Pro-Ala-Ala-Asn-Leu-Pro-Leu-Arg-Phe-NH2. The cell bodies and terminals containing this peptide were localized immunohistochemically in the suprachiasmatic nucleus and median eminence, respectively. This RFa peptide stimulated, in a dose-related way, the release of GH from cultured pituitary cells, its threshold concentration ranging between 10(-9) and 10(-8) M. This peptide did not have any appreciable effect on the secretion of PRL and gonadotropins. It was ascertained that the peptide was also effective in elevating the circulating GH level when administered systemically. Thus, the amphibian hypothalamus was revealed to contain a novel functional RFa peptide that stimulates GH release. This peptide was designated frog GH-releasing peptide.
Mechanisms underlying the central regulation of food intake and fat accumulation are not fully understood. We found that neurosecretory protein GL (NPGL), a newly-identified neuropeptide, increased food intake and white adipose tissue (WAT) in rats. NPGL-precursor gene overexpression in the hypothalamus caused increases in food intake, WAT, body mass, and circulating insulin when fed a high calorie diet. Intracerebroventricular administration of NPGL induced de novo lipogenesis in WAT, increased insulin, and it selectively induced carbohydrate intake. Neutralizing antibody administration decreased the size of lipid droplets in WAT. Npgl mRNA expression was upregulated by fasting and low insulin levels. Additionally, NPGL-producing cells were responsive to insulin. These results point to NPGL as a novel neuronal regulator that drives food intake and fat deposition through de novo lipogenesis and acts to maintain steady-state fat level in concert with insulin. Dysregulation of NPGL may be a root cause of obesity.DOI: http://dx.doi.org/10.7554/eLife.28527.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.