The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.
One of the common features of unconventional superconducting systems such as the heavy-fermion, high transition-temperature cuprate and iron-pnictide superconductors is that the superconductivity emerges in the vicinity of long-range antiferromagnetically ordered state. In addition to doping charge carriers, the application of external pressure is an effective and clean approach to induce unconventional superconductivity near a magnetic quantum critical point. Here we report on the discovery of superconductivity on the verge of antiferromagnetic order in CrAs via the application of external pressure. Bulk superconductivity with T c E2 K emerges at the critical pressure P c E8 kbar, where the first-order antiferromagnetic transition at T N E265 K under ambient pressure is completely suppressed. The close proximity of superconductivity to an antiferromagnetic order suggests an unconventional pairing mechanism for CrAs. The present finding opens a new avenue for searching novel superconductors in the Cr and other transition metal-based systems.
All the iron-based superconductors identified to date share a square lattice composed of Fe atoms as a common feature, despite having different crystal structures. In copper-based materials, the superconducting phase emerges not only in square lattice structures but also in ladder structures. Yet iron-based superconductors without a square lattice motif have not been found despite being actively sought out. Here, we report the discovery of pressure-induced superconductivity in the iron-based spin-ladder material BaFe 2 S 3 , a Mott insulator with striped-type magnetic ordering below ~120 K. On the application of pressure this compound exhibits a metal-insulator transition at about 11 GPa, followed by the appearance of superconductivity below T c = 14 K, right after the onset of the metallic phase. Our findings indicate that iron-based ladder compounds represent promising material platforms, in particular for studying the fundamentals of iron-based superconductivity.The discovery of iron-based superconductors had a significant impact on condensed matter physics and led to extensive study of the interplay between crystal structure, magnetism and superconductivity 1 . All the iron-based superconducting materials discovered to date share the same structural motif: a two-dimensional square lattice formed by edge-shared FeX 4 tetrahedra (X = Se, P and As). The Fe atoms are nominally divalent in most of the parent materials. These parent compounds undergo a magnetic transition at low temperatures, typically exhibiting striped-type ordering.Superconductivity appears when the magnetic order is fully suppressed by the application of pressure or by the addition of doping carriers through chemical Purpose of this studyThe application of pressure is often a useful means of changing the electronic structure of a compound so as to induce a metallic state without simultaneously introducing any degree of disorder 17 . In this study, we investigated in detail the magnetic properties of a sulphur-analogue of the Fe-based ladder materials, BaFe 2 S 3 (space group: orthorhombic, Cmcm) 18,19 , and undertook experimental trials in which this compound was subjected to high pressures to obtain the metallic state. The electronic properties of this material depend on the manner in which the samples are synthesized, and thus we present data for sample 1 describing magnetic properties, and data for a range of samples 1 to 6 describing high-pressure effects. The details of the sample preparation process are given in the Method section. Electronic properties under ambient pressureFigure 2a displays the temperature dependence of the electrical resistivity (ρ) of BaFe 2 S 3 along the leg direction under ambient pressure. The observed insulating behaviour, which occurs despite the expected metallic behaviour in an unfilled 3d manifold, is caused by the Coulomb repulsion between Fe 3d electrons, which becomes prominent in a quasi-one-dimensional ladder structure. Figure 2b shows the magnetic susceptibility (χ) at 5 T along the three orthorhombic...
We investigate vortices in LiFeAs using scanning tunneling microscopy/spectroscopy. Zero-field tunneling spectra show two superconducting gaps without detectable spectral weight near the Fermi energy, evidencing fully-gapped multi-band superconductivity. We image vortices in a wide field range from 0.1 T to 11 T by mapping the tunneling conductance at the Fermi energy. A quasihexagonal vortex lattice at low field contains domain boundaries which consist of alternating vortices with unusual coordination numbers of 5 and 7. With increasing field, the domain boundaries become ill-defined, resulting in a uniformly disordered vortex matter. Tunneling spectra taken at the vortex center are characterized by a sharp peak just below the Fermi energy, apparently violating particlehole symmetry. The image of each vortex shows energy-dependent 4-fold anisotropy which may be associated with the anisotropy of the Fermi surface. The vortex radius shrinks with decreasing temperature and becomes smaller than the coherence length estimated from the upper critical field. This is direct evidence of the Kramer-Pesch effect expected in a clean superconductor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.