[1] Using hourly data from a three-year simulation based on a gravity-wave resolving general circulation model, we have first inferred a global view of gravity wave sources and propagation affecting significantly the momentum balance in the mesosphere. The meridional cross section of momentum fluxes suggests that there are a few dominant propagation paths originating from the subtropics in summer and the middle to high latitudes in winter. These gravity waves are focused into the mesospheric jets in their respective seasons, acting effectively to decelerate the jets. The difference in the source latitudes likely contributes to the hemispheric asymmetries of the jets. The horizontal distribution of the momentum fluxes indicates that the dominant sources are steep mountains and tropospheric westerly jets in winter and vigorous monsoon convection in summer. The monsoon regions are the most important window to the middle atmosphere in summer because of the easterlies associated with the monsoon circulation.
Abstract. Global surface emissions of nitrogen oxides (NOx) over a 10-year period (2005–2014) are estimated from an assimilation of multiple satellite data sets: tropospheric NO2 columns from Ozone Monitoring Instrument (OMI), Global Ozone Monitoring Experiment-2 (GOME-2), and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), O3 profiles from Tropospheric Emission Spectrometer (TES), CO profiles from Measurement of Pollution in the Troposphere (MOPITT), and O3 and HNO3 profiles from Microwave Limb Sounder (MLS) using an ensemble Kalman filter technique. Chemical concentrations of various species and emission sources of several precursors are simultaneously optimized. This is expected to improve the emission inversion because the emission estimates are influenced by biases in the modelled tropospheric chemistry, which can be partly corrected by also optimizing the concentrations. We present detailed distributions of the estimated emission distributions for all major regions, the diurnal and seasonal variability, and the evolution of these emissions over the 10-year period. The estimated regional total emissions show a strong positive trend over India (+29 % decade−1), China (+26 % decade−1), and the Middle East (+20 % decade−1), and a negative trend over the USA (−38 % decade−1), southern Africa (−8.2 % decade−1), and western Europe (−8.8 % decade−1). The negative trends in the USA and western Europe are larger during 2005–2010 relative to 2011–2014, whereas the trend in China becomes negative after 2011. The data assimilation also suggests a large uncertainty in anthropogenic and fire-related emission factors and an important underestimation of soil NOx sources in the emission inventories. Despite the large trends observed for individual regions, the global total emission is almost constant between 2005 (47.9 Tg N yr−1) and 2014 (47.5 Tg N yr−1).
Abstract.A data assimilation system has been developed to estimate global nitrogen oxides (NO x ) emissions using OMI tropospheric NO 2 columns (DOMINO product) and a global chemical transport model (CTM), the Chemical Atmospheric GCM for Study of Atmospheric Environment and Radiative Forcing (CHASER). The data assimilation system, based on an ensemble Kalman filter approach, was applied to optimize daily NO x emissions with a horizontal resolution of 2.8 • during the years 2005 and 2006. The background error covariance estimated from the ensemble CTM forecasts explicitly represents non-direct relationships between the emissions and tropospheric columns caused by atmospheric transport and chemical processes. In comparison to the a priori emissions based on bottom-up inventories, the optimized emissions were higher over eastern China, the eastern United States, southern Africa, and central-western Europe, suggesting that the anthropogenic emissions are mostly underestimated in the inventories. In addition, the seasonality of the estimated emissions differed from that of the a priori emission over several biomass burning regions, with a large increase over Southeast Asia in April and over South America in October. The data assimilation results were validated against independent data: SCIAMACHY tropospheric NO 2 columns and vertical NO 2 profiles obtained from aircraft and lidar measurements. The emission correction greatly improved the agreement between the simulated and observed NO 2 fields; this implies that the data assimilation system efficiently derives NO x emissions from concentration observations. We also demonstrated that biases in the satellite retrieval and model settings used in the data assimilation largely affect the magnitude of estimated emissions. These dependences should be carefully considered for better understanding NO x sources from top-down approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.