Malaria infection continues to be a major problem in many parts of the world including the Americas, Asia, and Africa. Insecticide-treated bed-nets have shown to reduce malaria cases by 50%; however, improper handling and human behavior can diminish their effectiveness. We formulate and analyze a mathematical model that considers the transmission dynamics of malaria infection in mosquito and human populations and investigate the impact of bed-nets on its control. The effective reproduction number is derived and existence of backward bifurcation is presented. The backward bifurcation implies that the reduction of scriptR below unity alone is not enough to eradicate malaria, except when the initial cases of infection in both populations are small. Our analysis demonstrate that bed-net usage has a positive impact in reducing the reproduction number scriptR. The results show that if 75% of the population were to use bed-nets, malaria could be eliminated. We conclude that more data on the impact of human and mosquito behavior on malaria spread is needed to develop more realistic models and better predictions.
The paper considers a deterministic model for the transmission dynamics of West Nile virus (WNV) in the mosquito-bird-human zoonotic cycle. The model, which incorporates density-dependent contact rates between the mosquito population and the hosts (birds and humans), is rigorously analyzed using dynamical systems techniques and theories. These analyses reveal the existence of the phenomenon of backward bifurcation (where the stable disease-free equilibrium of the model co-exists with a stable endemic equilibrium when the reproduction number of the disease is less than unity) in WNV transmission dynamics. The epidemiological consequence of backward bifurcation is that the classical requirement of having the reproduction number less than unity, while necessary, is no longer sufficient for WNV elimination from the population. It is further shown that the model with constant contact rates can also exhibit this phenomenon if the WNV-induced mortality in the avian population is high enough. The model is extended to assess the impact of some anti-WNV control measures, by re-formulating the model as an optimal control problem with density-dependent demographic parameters. This entails the use of two control functions, one for mosquito-reduction strategies and the other for personal (human) protection, and redefining the demographic parameters as density-dependent rates. Appropriate optimal control methods are used to characterize the optimal levels of the two controls. Numerical simulations of the optimal control problem, using a set of reasonable parameter values, suggest that mosquito reduction controls should be emphasized ahead of personal protection measures.
In this paper we study the dynamics of a vector-transmitted disease using two deterministic models. First, we look at time dependent prevention and treatment efforts, where optimal control theory is applied. Using analytical and numerical techniques, it is shown that there are cost effective control efforts for treatment of hosts and prevention of host-vector contacts. Then, we considered the autonomous counter part of the mode and we established global stability results based on the reproductive number. The model is applied to study the effects of prevention and treatment controls on a malaria disease while keeping the implementation cost at a minimum. Numerical results indicate the effects of the two controls (prevention and treatment) in lowering exposed and infected members of each of the populations. The study also highlights the effects of some model parameters on the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.