Motivation: Intrinsically disordered proteins play a crucial role in numerous regulatory processes. Their abundance and ubiquity combined with a relatively low quantity of their annotations motivate research toward the development of computational models that predict disordered regions from protein sequences. Although the prediction quality of these methods continues to rise, novel and improved predictors are urgently needed.Results: We propose a novel method, named MFDp (Multilayered Fusion-based Disorder predictor), that aims to improve over the current disorder predictors. MFDp is as an ensemble of 3 Support Vector Machines specialized for the prediction of short, long and generic disordered regions. It combines three complementary disorder predictors, sequence, sequence profiles, predicted secondary structure, solvent accessibility, backbone dihedral torsion angles, residue flexibility and B-factors. Our method utilizes a custom-designed set of features that are based on raw predictions and aggregated raw values and recognizes various types of disorder. The MFDp is compared at the residue level on two datasets against eight recent disorder predictors and top-performing methods from the most recent CASP8 experiment. In spite of using training chains with ≤25% similarity to the test sequences, our method consistently and significantly outperforms the other methods based on the MCC index. The MFDp outperforms modern disorder predictors for the binary disorder assignment and provides competitive real-valued predictions. The MFDp's outputs are also shown to outperform the other methods in the identification of proteins with long disordered regions.Availability: http://biomine.ece.ualberta.ca/MFDp.htmlSupplementary information: Supplementary data are available at Bioinformatics online.Contact: lkurgan@ece.ualberta.ca
Background: Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction.
Supplementary data are available at Bioinformatics online.
Knowledge of structural classes is useful in understanding of folding patterns in proteins. Although existing structural class prediction methods applied virtually all state-of-the-art classifiers, many of them use a relatively simple protein sequence representation that often includes amino acid (AA) composition. To this end, we propose a novel sequence representation that incorporates evolutionary information encoded using PSI-BLAST profile-based collocation of AA pairs. We used six benchmark datasets and five representative classifiers to quantify and compare the quality of the structural class prediction with the proposed representation. The best, classifier support vector machine achieved 61-96% accuracy on the six datasets. These predictions were comprehensively compared with a wide range of recently proposed methods for prediction of structural classes. Our comprehensive comparison shows superiority of the proposed representation, which results in error rate reductions that range between 14% and 26% when compared with predictions of the best-performing, previously published classifiers on the considered datasets. The study also shows that, for the benchmark dataset that includes sequences characterized by low identity (i.e., 25%, 30%, and 40%), the prediction accuracies are 20-35% lower than for the other three datasets that include sequences with a higher degree of similarity. In conclusion, the proposed representation is shown to substantially improve the accuracy of the structural class prediction. A web server that implements the presented prediction method is freely available at http://biomine.ece.ualberta.ca/Structural_Class/SCEC.html.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.