A hygroscopic tandem differential mobility analyzer (H-TDMA) and a hygroscopic coupled DMA and aerosol particle mass (H-DMA-APM) were coupled to examine aqueous film formation and the deliquescence behavior of inorganic nanoparticles. The two systems complement each other because H-DMA-APM measures mass change, while H-TDMA measures mobility diameter (volume) change of nanoparticles upon water uptake. The former mass change was, in particular, more capable to discern minute particle phase changes than the latter size change at moderate RHs. The mass and diameter changes were used to derive the particle effective density for evaluation of aqueous film formation on the nanoparticle surface before and after deliquescence transition. The measurements further showed that approximately 3-5 and 12-20 monolayer equivalents of water molecules formed on the respective surface of 50-and 100-nm inorganic aerosols (ammonium sulfate and sodium chloride) before deliquescence relative humidity (DRH). These findings support the physical basis of the coated-surface model given by Russell and Ming in 2002, and suggest that the phase transition of inorganic nanoparticles near deliquescence is a gradual process instead of an abrupt change. This phenomenon changed the surface energy values, thus confirming the explanation that the DRH of nanoparticles increases as the particle size decreases. This is the first direct observation of nanoparticle deliquescence phase transition using the H-DMA-APM system, and the detailed characterization of aqueous film formation on inorganic nanoparticles is feasible with the presented measurement systems.
Two portable, battery powered particle size distribution analyzers, TSI NanoScan scanning mobility particle sizer (TSI NanoScan SMPS 3910, USA) and Kanomax Portable Aerosol Mobility Spectrometer (Kanomax PAMS 3300, Japan), have been recently introduced to the market. Both are compact and allow researchers to rapidly measure and monitor ambient or indoor ultrafine and nanoparticles in real time. In addition, both instruments apply the SMPS measuring scheme, utilizing a corona charger in place of a radioactive neutralizer, and are integrated with a hand-held condensation particle counter (CPC). In this study, the different designs, flow schemes, and operational settings of both instruments have been summarized based on the information released by the manufacturers and the available published literature. The performance characteristics and monitoring capability of these two portable ultrafine to nanoparticle sizers were investigated and compared to a reference TSI 3936 lab-based SMPS under identical conditions. Reasonable agreement was found between the three instruments in terms of their efficiency in sizing and counting polydispersed particles. Of the two portable analyzers, PAMS was able to provide a higher sizing resolution for monodispersed particle measurements than NanoScan, when operated under the High Mode (higher sheath to aerosol flow ratio).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.