Efficient identification of patient, intervention, comparison, and outcome (PICO) components in medical articles is helpful in evidence-based medicine. The purpose of this study is to clarify whether first sentences of these components are good enough to train naive Bayes classifiers for sentence-level PICO element detection. We extracted 19,854 structured abstracts of randomized controlled trials with any P/I/O label from PubMed for naive Bayes classifiers training. Performances of classifiers trained by first sentences of each section (CF) and those trained by all sentences (CA) were compared using all sentences by ten-fold cross-validation. The results measured by recall, precision, and F-measures show that there are no significant differences in performance between CF and CA for detection of O-element (F-measure=0.731±0.009 vs. 0.738±0.010, p=0.123). However, CA perform better for I-elements, in terms of recall (0.752±0.012 vs. 0.620±0.007, p<0.001) and F-measures (0.728±0.006 vs. 0.662±0.007, p<0.001). For P-elements, CF have higher precision (0.714±0.009 vs. 0.665±0.010, p<0.001), but lower recall (0.766±0.013 vs. 0.811±0.012, p<0.001). CF are not always better than CA in sentence-level PICO element detection. Their performance varies in detecting different elements.
We propose and evaluate a systematic approach to detect and classify Patient/Problem, Intervention, Comparison and Outcome (PICO) from the medical literature. The training and test corpora were generated systematically and automatically from structured PubMed abstracts. 23,472 sentences by exact pattern match of head words of P-I-O categories. Afterward, the terms with top frequencies were used as the features of Naïve Bayesian classifier. This approach achieves F-measure values of 0.91 for Patient/Problem, 0.75 for Intervention and 0.88 for Outcome, comparable to previous studied based on mixed textural, paragraphical, and semantic features.In conclusion, we show that by stricter pattern matching criteria of training set, detection and classification of PICO elements can be reproducible with minimal expert intervention. The results of this work are higher than previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.