With the deep integration between the unmanned aerial vehicle (UAV) and wireless communication, UAV-based air-to-ground (AG) propagation channels need more detailed descriptions and accurate models. In this paper, we aim to perform cluster-based characterization and modeling for AG channels. To our best knowledge, this is the first study that concentrates on the clustering and tracking of multipath components (MPCs) for time-varying AG channels. Based on measurement data at 6.5 GHz with 500 MHz of bandwidth, we first estimate potential MPCs utilizing the space-alternating generalized expectationmaximization (SAGE) algorithm. Then, we cluster the extracted MPCs considering their static and dynamic characteristics by employing K-Power-Means (KPM) algorithm under multipath component distance (MCD) measure. For characterizing timevariant clusters, we exploit a clustering-based tracking (CBT) method, which efficiently quantifies the survival lengths of clusters. Ultimately, we establish a cluster-based channel model, and validations illustrate the accuracy of the proposed model. This work not only promotes a better understanding of AG propagation channels but also provides a general cluster-based AG channel model with certain extensibility.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.