A pedestrian counting method based on Haar-like detection and template-matching algorithm is presented. The aim of the method is to count pedestrians that are in a metro station automatically using video surveillance camera. The most challenging problem is to count pedestrians accurately in the case of not changing the position of the surveillance camera, because the view that surveillance camera uses in a metro station is always short-shot and nondirect downward view. In this view, traditional methods find it difficult to count pedestrians accurately. Hence, we propose this novel method. In addition, in order to improve counting accuracy more, we present a method to set the parameter value with a threshold-curve instead of a fixed threshold. The results of experiments show the high accuracy of our method.
This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author's institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.