Summary
Digital images are increasingly being used as input data for computational analyses. This study presents an efficient numerical technique to perform image‐based elastoplastic analysis of materials and structures. The quadtree decomposition algorithm is employed for image‐based mesh generation, which is fully automatic and highly efficient. The quadtree cells are modeled by scaled boundary polytope elements, which eliminate the issue of hanging nodes faced by standard finite elements. A novel, simple, and efficient scaled boundary elastoplastic formulation with stablisation is developed. In this formulation, the return‐mapping calculation is only required to be performed at a single point in a polytope element, which facilitates the computational efficiency of the elastoplastic analysis and simplicity of implementation. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed technique for performing the elastoplastic analysis of high‐resolution images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.