Yes-associated protein (YAP) has been reported to be an oncogene in a number of malignancies. It constitutes an important regulatory mechanism for the Hippo pathway, a key regulator of cell growth and apoptosis. The present study aimed to investigate the clinical significance and the role of YAP in the development of clear cell renal cell carcinoma (ccRCC). YAP expression levels were compared between ccRCC and adjacent normal renal tissues by RT-PCR and immunohistochemistry, respectively. YAP expression levels were then detected in ccRCC cell lines 786-0 and ACHN, as well as in human embryonic kidney 293 cells (HEK-293) using western blotting. Three specific YAP-shRNA lentiviral vectors were constructed and transfected into 786-0 cells, and then the mRNA and protein levels of YAP and downstream transcription factor TEAD1 were detected. Finally, the effects of YAP silencing on proliferation and the cell cycle distribution of 786-0 cells were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry (FCM), respectively. The apoptosis rate was also analyzed by FCM. It was observed that the expression levels of YAP mRNA and protein in ccRCC tissues were higher than these levels in the adjacent normal renal tissues. The expression of YAP protein in ccRCC tissues was significantly correlated with clinical stage and differentiation. The YAP protein levels in the two ccRCC cell lines 786-0 and ACHN were significantly higher than that in the HEK-293 cells. Additionally, treatment of 786-0 cells with YAP-shRNA lentiviral vectors significantly reduced the expression levels of YAP and TEAD1 mRNA and protein. Further analyses in 786-0 cells in which YAP was decreased, revealed that cell proliferation was inhibited, cell cycle was arrested at the G1 phase and apoptosis was increased. These results indicate that YAP is an underlying oncogene in ccRCC and it may be a promising biomarker and therapeutic target of ccRCC.
Large tumor suppressor 1 (LATS1) gene is one of the key factors in Hippo signaling pathway. Inactivation of LATS1 by promoter methylation was found in colorectal cancer (CRC), head and neck squamous cell carcinoma (HNSCC), astrocytoma, breast cancer and it was proved to be a tumor suppressor. However, its role is unclear in renal cell carcinoma (RCC). In this study, the expression of LATS1 was determined by reverse transcription polymerase chain reaction (RT‑PCR) and immunohistochemistry in 30 pairs of RCC tissues and matched normal kidney tissues and RCC cells. We found that the expression of LATS1 was markedly reduced in RCC tissues and cells, in the RCC tissue in 46.7% (14/30), while in the normal kidney tissues in 76.7% (23/30), and was associated with pathological grade and clinical stage of RCC. We detected methylation status of LATS1 by bisulfite sequence-PCR (BSP) in renal cancer cell line 786-O which lowers expression of LATS1, and we found it hypermethy-lated (in 97.5%). In addition, pharmacological demethylation using 5-Aza-2'-deoxycytidine (5-Aza) restored the expression of LATS1 mRNA and protein in 786-O cells, both LATS1 demethylation and overexpression of LATS1 downregulated the expression of Yes-associated protein (YAP), inhibited cell proliferation, induced cell apoptosis and cell cycle G1 arrest in 786-O cells. Thus, this report for the first time demonstrates the inactivation of LATS1 by promoter methy-lation and it is a tumor suppressor in kidney cancer. LATS1 may serve as a biomarker for possible early diagnosis and as a potential therapeutic target for human RCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.