Hetero-nanostructures featured with both strong plasmon absorption and high catalytic activity are believed to be ideal platforms to realize efficient light-driven catalysis. However, in reality, it remains a great challenge to acquire high-performance catalysis in such hetero-nanostructures due to poor generation and transfer of plamson-induced hot electrons. In this report, we demonstrate that Au nanorod@Pd superstructures (Au@Pd SSs), where the ordered Pd nanoarrays are precisely grown on Au nanorod surfaces via solution-based seed-mediated approach, would be an excellent solution for this challenge. Both experiment and theory disclose that the ordered arrangement of Pd on Au nanorod surfaces largely promotes hot electron generation and transfer via amplified local electromagnetic field and decreased electron-phonon coupling, respectively. Each effect is separately highlighted in experiments by the significant plasmon-enhanced catalytic activity of Au@Pd SSs in two types of important reactions with a distinct time scale of bond-dissociation event: molecular oxygen activation and carbon-carbon coupling reaction. This work opens the door to design and application of new generation photocatalysts.
Self-assembly of inorganic nanoparticles into ordered structures is of interest in both science and technology because it is expected to generate new properties through collective behavior; however, such nanoparticle assemblies with characteristics distinct from those of individual building blocks are rare. Herein we use atomically precise Au clusters to make ordered assemblies with emerging optical activity. Chiral Au clusters with strong circular dichroism (CD) but free of circularly polarized luminescence (CPL) are synthesized and organized into uniform body-centered cubic (BCC) packing nanocubes. Once the ordered structure is formed, the CD intensity is significantly enhanced and a remarkable CPL response appears. Both experiment and theory calculation disclose that the CPL originates from restricted intramolecular rotation and the ordered stacking of the chiral stabilizers, which are fastened in the crystalline lattices.
Preventing aggregation of amyloid beta (Aβ) peptides is a promising strategy for the treatment of Alzheimer’s disease (AD), and gold nanoparticles have previously been explored as a potential anti-Aβ therapeutics. Here we design and prepare 3.3 nm L- and D-glutathione stabilized gold nanoparticles (denoted as L3.3 and D3.3, respectively). Both chiral nanoparticles are able to inhibit aggregation of Aβ42 and cross the blood-brain barrier (BBB) following intravenous administration without noticeable toxicity. D3.3 possesses a larger binding affinity to Aβ42 and higher brain biodistribution compared with its enantiomer L3.3, giving rise to stronger inhibition of Aβ42 fibrillation and better rescue of behavioral impairments in AD model mice. This conjugation of a small nanoparticle with chiral recognition moiety provides a potential therapeutic approach for AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.