Macroscopic cat states have been widely studied to illustrate fundamental principles of quantum physics as well as their applications in quantum information processing. In this paper, we propose a quantum speed-up method for the creation of cat states in a Kerr nonlinear resonator (KNR) via optimal adiabatic control (OAC). By simultaneously adiabatic tuning the cavity-field detuning and driving field strength, the width of the minimum energy gap between the target trajectory and non-adiabatic trajectory can be widened, which allows us to accelerate the evolution along the adiabatic path. Compared with the previous proposal, preparing cat states only by controlling two-photon pumping strength, our method can prepare the target state with a shorter time, a high-fidelity, and a large non-classical volume. It is worth noting that the cat state prepared here is also robust against single-photon loss. Moreover, when we consider the KNR with a large initial detuning, our proposal will create a large-size cat state successfully. This proposal for preparing cat states can be implemented in superconducting quantum circuits, which provides a quantum state resource for quantum information encoding and fault-tolerant quantum computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.