With the popularisation of Android smartphones, the value of mobile application security research has increased. The emergence of adversarial technology makes it possible for malware to evade detection. Therefore, research is conducted on Android malicious applications of adversarial attack. To clarify the process and theory of adversarial sample generation, an adversarial sample generation algorithm is proposed that filters features based on feature spatial distribution and definition. These features are modified on real malicious samples to form adversarial samples. In addition, to enhance the robustness of adversarial sample classification detection, a multiple feature set detection algorithm is designed and implemented. Using the frequency differential enhancement feature selection algorithm to perform feature screening, the algorithm forms two different feature sets and establishes two different training sets to train different classification algorithms. Prediction results obtained by the two classification algorithms are integrated based on certain rules. Experimental results on the VirusShare dataset show that both algorithms are effective. The detection results in an actual environment also prove the effectiveness of the multiple feature set detection algorithm.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
. In the coal-rock interface recognition (CIR) technology, signal process and recognition are the key parts. A method for CIR based on BP neural networks and fuzzy technique was proposed in this paper. By using the trail-and-error, the hidden layer dimension of the network was decided. Also the network training and weight modification were studied. In order to get a higher identification ratio, fuzzy neural networks (FNN) based data fusion was studied. For CIR, the structure and algorithm of FNN were determined. The results indicated that the test data can be used to train and simulate with the neural network and FNN. And the proposed method can be used in CIR with a higher recognition ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.