The sulfidation process of porous zinc oxide sorbent with hydrogen sulfide can be described in five steps after external mass transfer and pore diffusion. They are surface adsorption of hydrogen sulfide gas on zinc oxide sorbent and dissociation of the gas molecule on the sorbent surface, followed by reversible surface reactions, sulfide ion migration under the surface, and sulfidation penetration into the solid crystallite. On the basis of the understanding of this chemistry, an empirical rate law for the intrinsic kinetics of the sulfidation process was derived in this study. Kinetics modeling results using this reversible, adsorption, and ion-migration (RAIM) model were found, consistent with selected experiments of single-particle sulfidation. Modeling results were also comparable with several well-defined sulfidation models in the literature. The intrinsic kinetics of a porous ZnO sorbent G-72E were measured in a microflow packed column and calculated using the RAIM model, using a finite difference approach. The effective pore diffusivity of gaseous hydrogen sulfide in the porous zinc oxide pellet was calculated using the general process modeling system (gPROMS). Finally, design calculation for a full-scale packed desulfurizer was performed using the gPROMS distributed reactor model. Case studies were presented for hydrogen sulfide removal from natural gas in a simulated fuel-processing train for syngas production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.