Background: Umbilical cord mesenchymal stem cell (HUCMSC)-based therapies were previously utilised for cartilage regeneration because of the chondrogenic potential of MSCs. However, chondrogenic differentiation of HUCMSCs is limited by the administration of growth factors like TGF-β that may cause cartilage hypertrophy. It has been reported that extracellular vesicles (EVs) could modulate the phenotypic expression of stem cells. However, the role of human chondrogenic-derived EVs (C-EVs) in chondrogenic differentiation of HUCMSCs has not been reported.Results: We successfully isolated C-EVs from human multi-finger cartilage and found that C-EVs efficiently promoted the proliferation and chondrogenic differentiation of HUCMSCs, evidenced by highly expressed aggrecan (ACAN), COL2A, and SOX-9. Moreover, the expression of the fibrotic marker COL1A and hypertrophic marker COL10 was significantly lower than that induced by TGF-β. In vivo, C-EVs induced HUCMSCs accelerated the repair of the rabbit model of knee cartilage defect. Furthermore, C-EVs led to an increase in autophagosomes during the process of chondrogenic differentiation, indicating that C-EVs promote cartilage regeneration through the activation of autophagy.Conclusions: C-EVs play an essential role in fostering chondrogenic differentiation and proliferation of HUCMSCs, which may be beneficial for articular cartilage repair.
Background
Umbilical cord mesenchymal stem cell (HUCMSC)-based therapies were previously utilised for cartilage regeneration because of the chondrogenic potential of MSCs. However, chondrogenic differentiation of HUMSCs is limited by the administration of growth factors like TGF-β that may cause cartilage hypertrophy. It has been reported that exosomes could modulate the phenotypic expression of stem cells. However, the role of human chondrogenic-derived exosomes (C-EXOs) in chondrogenic differentiation of HUCMSCs has not been reported.
Results
In this study, we successfully isolated chondrocyte-derived exosomes (C-EXO) from human multi-finger cartilage and found that C-EXO efficiently promoted the proliferation and chondrogenic differentiation of HUCMSCs, evidenced by highly expressed aggrecan (ACAN), COL2A and SOX-9. Also, the expression of the fibrotic marker, COL1A and hypertrophic marker, COL10, was significantly lower than that induced by TGF-β. In vivo, stimulation of C-EXO accelerated HUCMSCs-mediated cartilage repair in rabbit models. Furthermore, C-EXO led to increasing autophagosomes during the process of chondrogenic differentiation, indicating that C-EXO promoted cartilage regeneration might be through the activation of autophagy.
Conclusions
C-EXOs play an essential role in fostering chondrogenic differentiation and proliferation of HUCMSCs, which may be beneficial for articular cartilage repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.